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Outline

In many classical problems: diffusion, electrical
conduction, linear elasticity, homogenized equations have
the same structure as fine scale problems. Example: linear
elasticity upscales to a linear elasticity system with
effective elastic modulae.
Today, we’ll look at two problems of a different sort. The
structure of the effective equations for these problems is
(quite) different from the structure of the ε-problems.
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Abstractions

Reality: a finite size sample of one specific material. Scales are
separated: l � L. Introduce a small parameter ε = l

L . Our
material corresponds to one specific value of ε.

Abstraction: consider infinitely many fictitious materials,
corresponding to infinitesimally small values of ε. Analogy:
transition from small increments to infinitesimally small
increments in calculus.

Another way to think of these materials is in the spirit of
statistical physics. Infinite set of materials is an ensemble.
Question: how to generate such an ensemble? Easy if our
material has a periodic microstructure. Then l is the size of the
periodicity cell l

L Y . Once we have the cell, we can shrink it an fill
the original domain with the shrunk copies of εY of a fixed (unit)
cell Y .

Next step: approximate the physical fields (strain, stress) in an
actual material with the ε→ 0 limits of the corresponding
ensemble quantities.
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More abstractions

Two–scale asymptotic expansions.
In periodic homogenization problems, it often makes sense
to approximate functions like this:

f (x , ε) ≈ f 0
(

x ,
x
ε

)
+ εf 1

(
x ,

x
ε

)
+ ε2f 2

(
x ,

x
ε

)
+ . . . ,

where f j(x , y), j = 1,2, . . . are periodic with respect to y .
Enlarge dimension of the problem:

f (x , ε)→ f (x , y)|y= x
ε
.

This suggest studying functions f (x , y) on Ω× Y , where Ω
is the "physical" domain, and Y is the periodicity cell.
This "lifting" leads to separation of slow (x) and fast (y )
variables. Also, the x , y -problems are parameter
independent. The goal: separate variables, solve a small
number of fast variable cell problems posed on Y , and then
use the results to define effective quantities in the slow
variable effective equations.
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Flow in porous media

Notation:
–Ω-a physical domain modeling a porous composite material;
– Ωε- a family of periodic perforated domains modeling pore
space in a rigid porous matrix; ∂Ωε is the boundary of Ωε;
–Y -periodicity cell; Yf -pore space part of the periodicity cell;
– vε-fluid velocity;
– Pε -fluid pressure;
– f -density of a body force (e.g. gravity);
– µ -viscosity of the fluid;

The flow is governed by Stokes equations:

µ∆vε −∇Pε = f , in Ωε, (1)
div vε = 0, in Ωε, (2)
vε = 0, on ∂Ωε. (3)
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Two-scale asymptotic expansions

vε = ε2v0
(

x ,
x
ε

)
+ ε3v1

(
x ,

x
ε

)
+ . . . , (4)

Pε = P0(x) + εP1
(

x ,
x
ε

)
+ . . . . (5)

Begin working with (2). Use

div f
(

x ,
x
ε

)
=

(
divx +

1
ε

divy

)
f (x , y)|y= x

ε
, (6)

Plug this into (4) and collect like terms:

0 = εdivyv0 + ε2
(

divxv0 + divyv1
)

+ . . . .

Therefore
divyv0 = 0, (7)

divxv0 + divyv1 = 0, (8)
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Averaging operator

v ≡ 1
|Y |

∫
Y

v(x , y)dy .

Effective velocity is defined as v0.

Apply the averaging operator to (8).

0 = divxv0 +
1
|Y |

∫
Y

divyv1(x , y)dy (9)

= divxv0 +
1
|Y |

∫
Yf

divyv1(x , y)dy

= divxv0 +
1
|Y |

∫
∂Yf

v1(x , y) · ν(y)dy

= divxv0.
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The first effective equation:

divxv0 = 0.

Effective flow is incompressible.

Next, use (4), (5) in (2).
ε0 -term:

µ∆yv0 −∇yP1 = f −∇xP0. (10)

Note that RHS depends only on x , and the differentiations in
LHS are in y .

Idea: separate variables and look for v0 of the form

v0(x , y) =
1
µ

(
fi − ∂xi P

0
)

(x)w i(y). (11)

Summation with respect to i = 1,2,3, and w i are vectors to be
determined.
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Insert (11) into (10). Componentwise,(
fi − ∂xi P

0
)

∆w i
j−∂yj P

1 = fj−∂xj P
0 =

(
fi − ∂xi P

0
)
δij , j = 1,2,3.

Summation in i , and j is fixed. Also write

P1(x , y) =
(

fi − ∂xi P
0
)

(x)P1,i(y)

Rearrange:(
fi − ∂xi P

0
)(

∆w i
j − δij − ∂yj P

1,i
)

= 0, j = 1,2,3.

This will be solved if w i(y) satisfy

Cell problems

∆w i −∇P1,i = ei , in Yf , (12)
div w i = 0 in Yf

Boundary conditions: periodic on ∂Yf ∩ ∂Y , zero on the rest of
∂Yf .
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Final step: apply averaging operator to (11). This yields

Darcy law

v0 = K (f −∇P0), (13)

where the effective permeability tensor K is defined by

Kij =
1
µ

w i
j . (14)
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Complete set of effective equations

v0 = K (f −∇P0),

div v0 = 0,

where K is defined by (14), and w i
j are components of vectors

w i satisfying cell problems (12). Elimination of v0 yields a
diffusion equation for P0

− div
(

K∇P0
)

= F , (15)

where F = −div(Kf ). Boundary conditions for (15)(
K∇P0

)
· ν = 0 on ∂Ω.
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Acoustics of solid-fluid mixtures

The composite Ω is a union of a solid Ωε
s and fluid Ωε

f domains.

Solid equations.

ρsv t − div T s = f , in Ωε
s. (16)

T s = Ae(u) + Bse(v). (17)

Here u is displacement, v velocity, A is the material stiffness
tensor, Bs is the viscosity tensor, e = 1

2(∇+∇T ), so that e(u)
is strain.
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Fluid equations.

ρf v t − div T f = f , in Ωε
f . (18)

T f = Bf e(v) + c2ρf divu I . (19)

These are the constitutive equations of a slightly compressible
viscous fluid. Here Bf is the viscosity tensor, c is the speed of
sound. Comment on the derivation of (19).
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In the periodicity cell Y , define the solid Y s and fluid Y f parts.
Next, let

ρ(y) =

{
ρs in Y s,

ρf in Y f ,

Composite stiffness

A(y) =

{
As in Y s,

c2ρf I in Y f ,

Composite viscosity

B(y) =

{
Bs in Y s,

Bf in Y f ,
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Define the composite density, stiffness and viscosity
ρε = ρ

(x
ε

)
, Aε = A

(x
ε

)
, Bε = B

(x
ε

)
. Combine (16) and (18)

into one system

ρεuε
tt − div (Aεe(uε) + Bεe(uε

t )) = f , in Ω. (20)

Two-scale expansion

uε(t , x) = u0(t , x) + εu1
(

t , x ,
x
ε

)
+ ε2u2

(
t , x ,

x
ε

)
+ . . . . (21)
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To lift, notice that for each smooth enough w
(
t , x , x

ε

)
,

e
(

w
(

t , x ,
x
ε

))
= [ex +

1
ε

ey ](w(x , y))|y= x
ε
, (22)

div
(

w
(

t , x ,
x
ε

))
= [divx +

1
ε

divy ]w(x , y)|y= x
ε
.

Plug (21) into (20), take (22) into account and collect like terms.
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ε−1–term and ε0–term, are, respectively

divyT 0 = 0, (23)

ρ(y)u0
tt − divxT 0 − divyT 1 = f , (24)

where

T 0 = A(y)
(

e(u0) + ey (u1)
)

+ B(y)
(

e(u0
t ) + ey (u1

t )
)
,

T 1 = A(y)
(

ex (u1) + ey (u2)
)

+ B(y)
(

ex (u1
t ) + ey (u2

t )
)
.
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ε−1–term: ansatz

A good ansatz:

u1(t , x , y) = npq(y)e(u0)pq(t , x) + (25)∫ t

0
mpq(t − τ, y)e(u0

t )pq(τ, x)dτ.

Then

Aey (u1) + Bey (u1
t ) = Fpq

11 e(u0)pq + Fpq
12 e(u0

t )pq (26)

+Fpq
2 e(u0

t )pq +

∫ t

0
Fpq

3 (t − τ)e(u0
t )pq(τ)dτ,
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In (26),

Fpq
11 = A Ipq + Asθ(y)ey (npq), (27)

Fpq
12 = Bf (1− θ(y))ey (npq), (28)

Fpq
2 = c2ρf I e(npq) + B(Ipq + ey (mpq

0 )), (29)
Fpq

3 = Ae(mpq) + Be(mpq
t ). (30)

Ipq =
1
2

(ep ⊗ eq + eq ⊗ ep),

and

θ(y) =

{
1, if y ∈ Y s,

0, if y ∈ Y f .
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Cell problems

divyF11 = divyF12 = 0. (31)

This is an elasticity-type problem for npq.

divyF2 = 0. (32)

This is an elasticity-type problem for mpq
0 .

divyF3 ≡ divy
[
Ae(mpq) + Be(mpq

t )
]

= 0. (33)

This is an evolution equation for mpq(t , y) with the initial
condition mpq(0, y) = mpq

0 .
The sequence: first solve (31). Then use this solution in the
source term in (32), and find mpq

0 . Then use this solution as the
initial condition in (33) and find mpq.
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Effective equation

Apply the averaging operator to (24) and observe that

ρ(y)u0
tt (t , x) = ρu0

tt ,

and

divyT 1 =
1
|Y |

∫
Y

divyT 1dy =
1
|Y |

∫
∂Y

T 1νdy = 0

by Y -periodicity.

Effective equation:

ρu0
tt − divT = f ,

where the effective constitutive equation is

T = Ae(u0) + Be(u0
t ) +

∫ t

0
C(t − τ)e(u0

t )(τ)dτ.
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Effective material properties

Aijpq = Fpq
11,ij ,

Bijpq = Fpq
12,ij + Fpq

2,ij ,

C ijpq(t) = Fpq
3,ij(t).
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Conclusions

two-scale expansions work, at least on the formal level, in
a variety of linear homogenization problems;
two-scale techniques deliver explicit formulas for the
effective properties;
the details of the postulated expansions (e.g scaling of the
first term, dependence of the first term only on x) are
problem-specific;
the crucial part of the method is a problem-specific ansatz
which expresses u1 in terms of u0. Compare with the
closure problem in other asymptotic methods (e.g.
statistical mechanics);
the effective material response of solid-fluid mixtures is
often different from the material response of both
constituents.
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