
Introduction to Parallel Programming

Presented by: Kevin Glass
and Doug Baxter

2

Outline

Goals for parallelizing code
Basic issues with parallelism
Parallel computing paradigms
Code design

Shared memory
Distributed memory

Debugging code
Performance analysis
Summary

3

Basic goal

#1 Make the code go faster
Simple goal
Easier to measure
Some big caveats

Faster than what?
At what cost?

#2 Run bigger problems
Large problems “too big” for single processor
Problem requires more storage space

4

Metrics

Measuring performance
Time to completion

The time the code starts to the time it finishes
Turn-around (batch system)

The time the code was submitted to the time it finishes
Speed-up

How much faster is the parallel code compared to the serial
code
WARNING: Running code on n processors will not make it n
time faster

5

Metrics

Unspoken performance criteria
Results are still correct
Implies code was correct to begin with

How was serial version tested?

6

Basic issues in making
good code

Good parallel code starts from good serial code
Good serial code is

Well-written
- Small programming units
- Well-documented

Written for unit and integration tests
- Unit tests verify each function works as required
- Unit tests expose the limitations of a given function
- Integration tests ensure functions work well together

Correctness is validated
Performance is analyzed

7

Outline

Goals for parallelizing code
Basic issues with parallelism
Parallel computing paradigms
Code design

Shared memory
Distributed memory

Debugging code
Performance analysis
Summary

8

Parallelism begins with
Serial Code

What is Parallelism
Problem data space decomposed
Computation tasks decomposed
I/O tasks decomposed

Decomposition implies a composition
Serial code requires some planning

Sequence of operations
Layout of data

Good serial code uses the system
Cache/memory
CPU properties

9

Sequential programming as
a paradigm

What does a program do?
Load data – move from input device to RAM
Process data – move data between RAM and CPU
Output results – move data from RAM to output device

For example – consider matrix multiplication
Get matrices A and B
Compute A*B = C
Store C in output.dat

10

Serial matmul Code
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <malloc.h>
#include <sys/stat.h>
#include <fcntl.h>

int
main(int argc, char * argv[])
{

double * a, * b, * c;
int ar, ac, br, bc;
int fha, fhb;

double * c_ptr, * a_ptr, * b_ptr;
int i, j, k;

fha = open(argv[1], O_RDONLY);
read(fha, &ar, 4);
read(fha, &ac, 4);

fhb = open(argv[2], O_RDONLY);
read(fhb, &br, 4);
read(fhb, &bc, 4);

a = (double *)malloc(ar*ac*8);
b = (double *)malloc(br*bc*8);
c = (double *)malloc(ar*bc*8);
c_ptr = c;

b_ptr = b;
a_ptr = a;
read(fha, a, ar*ac*8);
read(fhb, b, br*bc*8);

for (i = 0; i < ar*bc; i++)
{
*c_ptr = 0.0;

}

11

Serial matmul Code
for (j = 0; j < bc; j++)

{
for (i = 0; i < ar; i++)
{

a_ptr = a + i;
for (k = 0; k < ac; k++)
{

*c_ptr += *a_ptr * *
(b_ptr + k);

a_ptr += ar;
}

++c_ptr;
}

b_ptr += ac;
}

for (i = 0; i < ar; i++)
{
for (j = 0; j < bc; j++)
{
printf("%5.3lf ", *(c + i +

j*ar));
}

printf("\n");
}

12

What makes sequential
processing work?

Assuming correct code
Deterministic sequence of instructions

Instructions are issued in order
Data read and write are guaranteed to be in order

Always have data where you need it, when you need it
If code is designed correctly
If processor is functioning correctly

13

Deterministic processing is
an artifact

A serial system is deterministic because it has no
choice

Serial code is processed in order
Results are “communicated” in order
I/O is processed in order

A parallel system is not deterministic because it
has no choice

Code on different processors processed at different
rates
Memory access across program done in different order
I/O is performed by any processor at any time

14

Controlling the chaos

If parallel code to be useful, the system's non-
determinism must not interfere with the data
dependencies on the code
Compromise: Impose determinism in data
dependency

Order is not important until causal dependencies are
disrupted
Programmer's responsibility to ensure maintenance of
causal dependencies

Key to well-designed parallel code is knowing
when to communicate

15

Parallelism requires a new
paradigm

Get data to where it is needed when it is needed
Communicate partial results
Synchronize data access

Rewrite (and rethink) problem
Allow different parts of code to execute on different
processors
Allow different parts of data to reside on different
processors
Both different parts of code and data reside on
different processor

16

Rethinking the problem

What data is needed for each part of the
computation?

Pay attention to where you put data
Communicate data to where it is needed

When is it needed?
Pay attention to data dependencies, know when a data
point is needed
If a processor is ready before the data arrives, make
the processor wait

Ensure causality

17

Reconsider matmul

Rethinking matrix multiplication
Who does I/O?

Lots of options
In this example

- one processor (reader) gets the data
- reader distributes the data

Who does computation?
Can the problem be divided?
In this example

- hard to break it computational tasks
- each processor does part of multiplication

18

Reconsider matmul
(continued)

Rethinking matrix multiplication
Where is the data?

What data does each processor get?
In this example

- Distribute C and A
- Every processor gets B

How does a processor get data?
Who gets the data?
In this example,

- Reader distributes A (the part required) and B
- Reader, which also writes data, gets C from every

processor

19

Serialized Code

Assuming no other problems (very bad
assumption)

The read and write portions of the algorithm are serial
Serial execution time is unaffected by parallelizing
If serial code dominates execution, effectiveness of
parallelizing reduces

20

Network Latency and
Bandwidth

Networks are slower then processors
Latency is the time it takes to fulfill a data request
Single processor, worst case is time from HD to CPU
(~100 ns)
Parallel processor, worst case is traversing several
routers (~10 μs per switch)

Networks are limited in their data rate
Bandwidth is the amount of data that can be on the
network at a given time
As the amount of data passed between processors
increases the overhead of data passing increases

21

Matmul latency and
bandwidth

Network cost of serializing read and write
Larger distributed sub-matrices means more data
passed to nodes
More processors means sub-matrices transferred to
writer node
As the problem size increases, the latency and
bandwidth may dominate the cost.

22

Quantifying the Problem

Consider a program with the following
execution pattern

Make parallel part “infinitely fast”

23

Making things worse

What happens when parallelizing does not
do a good job.

24

Amdahl’s Law

Amdahl’s Law
Np

speedupmax
/s

1
+

≤

s – fraction of original code uneffected by parallelization
p – fraction of original code effected by parallelization
N – number of processors

To take advantage of parallel systems, you must understand
how to take advantage of the system on which you are
working.

25

Outline

Goals for parallelizing code
Basic issues with parallelism
Parallel computing paradigms
Code design

Shared memory
Distributed memory

Debugging code
Performance analysis
Summary

26

Paradigms for Parallelism

Three basic approaches
One node with one big piece of memory and lots of
processors
Lots of nodes with smaller pieces of memory and one
processor
Lots of nodes with medium sized memory and lots of
processors

27

Shared Memory Paradigm

One node with one big piece of memory and lots
of processors

28

Shared Memory Paradigm

Memory access
Mutually exclusive access to shared memory
Exclusive access to private memory

Communications
Mutual exclusion mechanism used to “communicate”

Hardware issues
High-bandwidth requirement limits number of
processors

29

Distributed Memory
Paradigm

Lots of nodes with smaller pieces of memory and
one processor

30

Distributed Memory
Paradigm

Memory access
No global memory
Local memory controlled by processor

Communications across network (latency and
bandwidth issues)

Processor responsible for sharing (communicating)
information

Hardware
Network topology may aid or hinder communications
Impact of network depends on problem decomposition

31

Hybrid System
(Distributed Shared
Memory)

Network of shared memory machines

32

Outline

Goals for parallelizing code
Basic issues with parallelism
Parallel computing paradigms
Code design

Shared memory
Distributed memory

Debugging code
Performance analysis
Summary

33

Shared Memory Basics

Basics of execution
Process/thread

fork/join process
Mutually exclusive access to shared data

Exclusive access mechanism
Mechanism is atomic (only on change process at a time)

Synchronized access
Barriers if required

Parallelizing approaches
H/W primitives
Language assistance
Environments

34

Data race condition

Race condition
Two or more threads try to access data
One starts the change process
Another interrupts in the middle of the first's changes
End of first's changes are non-deterministic

35

Race condition example

Consider shared memory matmul
Partition problem such that thread a gets |Ai0 – Ai(k-1)|
and |B0i – B(k-1)i|
Thread b gets |Aik – Ain| and |Bki – Bni|
Thread a computes C00 += A01*B10 and thread b
computes C00 += A0k*Bk0 at the same time
Let thread b read first
Let thread a write first

36

Race condition example
(continued)

37

OMP

Setup for OMP
Include OMP headers
OMP parallel directive (responsible for spawning
threads)

OMP directives
Define parallel regions
Serialized regions
Barriers

Environment variables

38

OMP Tutorials
http://meghnad.iucaa.ernet.in/~hpc/oldWorkshop/OMP_Tutorial.html
http://www.llnl.gov/computing/tutorials/openMP/
http://www.nersc.gov/nusers/help/tutorials/openmp/

Books
Software Optimization for High Performance Computing. Wadleigh, K.R.

and I.L. Crawford. Hewlett-Packard Professional Books.2000

OMP resources

39

Outline

Goals for parallelizing code
Basic issues with parallelism
Parallel computing paradigms
Code design

Shared memory
Distributed memory

Debugging code
Performance analysis
Summary

40

Writing Distributed
Memory Code

Basics of execution
Process based
Data is passed between processors, not shared

Interprocessor communications
Intentional data sharing

Synchronized communications
Barriers if required
Synchronized communications

Asynchronous communications
must eventually synchronize

Distributed memory environments (MPI)

41

Problems with Distributed
Memory

Network latency and bandwidth
Race conditions (communications not
synchronized)
Race conditions (resource access not controlled)

42

Writing distributed
memory code

Decomposing the problem
Attention to hardware

Data cache usage (spatial/temporal locality)
Network communications cost

- Striped data
- Block data

Duplicate when necessary
I/O

I/O latency
Multiple readers/writers (know your H/W first)

43

Writing distributed
memory code

Computation
Can tasks be divided?

Should they be divided?
How many processors to a task
Profile the serial version first

Coordinating partial results
Synchronous

- All-to-all communication
- Reduction
- Scatter-Gather
- Broadcast

Asynchronous

44

Before we get started...

Good parallel code comes from good serial code
Well-designed code is easier to manage
Well-tested code eliminates confounding problems
when debugging parallel code

Complex data management schemes become
more complex when parallelized
Well-designed serial code can mitigate need for
parallel code
Well-designed serial code is easier to profile

45

Partitioning Problem

Divide the matrix into sub-matrices
For an n x m matrix run on p processors

Distribute n/p rows or m/p columns
If n ∤ p (or m ∤ p) add one additional row (or column) to each
processor as necessary
NOTE: we could distribute blocks of the matrix, we could
distribute submatrices of different shapes and sizes

Each processor performs its portion of multiplication

46

Compartmentalize code

Separate computation, communications and I/O
Purpose of functions are clearer
Components can be isolated

Debugging problems are isolated to components
Easier to swap components

47

Using MPI to solve matmul

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <malloc.h>
#include <sys/stat.h>
#include <fcntl.h>

int
main(int argc, char * argv[])
{
// declarations
...
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, procs);
MPI_Comm_rank(MPI_COMM_WORLD, rank);

...

// rank 0 reads matrix dimensions
if(mat->rank == 0){

size[0] = mat->rows;
size[1] = mat->cols;

}
// broadcast matrix dimensions
MPI_Bcast(size, 2, MPI_INT, 0,

MPI_COMM_WORLD);

// rank i<>0 reads set dimensions
if(mat->rank != 0){

mat->rows = size[0];
mat->cols = size[1];

}
// partition matrix
setRankMatrix(A, A->rows, A->cols);
MPI_Bcast(A->elements, A->size,

MPI_DOUBLE, 0, MPI_COMM_WORLD);

48

Using MPI to solve matmul

// do computation
...

if (C->rank == 0){
elements = (double
*)malloc(sizeof(double)*C->size);
for (i = 1; i < C->nprocs; i++){

MPI_Recv(elements, C->size,
MPI_DOUBLE, i, 1,
MPI_COMM_WORLD, &status);

}
} else {

MPI_Send(C->elements, C->size,
MPI_DOUBLE, 0, 1, MPI_COMM_WORLD);

}
...

MPI_Finalize();

void setRankMatrix(matrix * mat, int
rows, int cols){
int nRows = rows/ mat->nprocs;
int rem = rows-mat->nprocs*nRows;

...

if (mat->rank < rem){
mat->startRow = mat->rank *

(nRows + 1);
mat->nRows = nRows + 1;

} else {
mat->startRow = mat->rank *

nRows + rem;
mat->nRows = nRows;

}
}

49

Some MPI resources

Tutorials
http://www-unix.mcs.anl.gov/mpi/
http://www.llnl.gov/computing/tutorials/mpi/
http://www-unix.mcs.anl.gov/mpi/tutorial/

Texts
Parallel Programming in MPI. Pacheco, P. S. Morgan-Kaufmann. 1997
Software Optimization for High Performance Computing. Wadleigh, K.R.

and I.L. Crawford. Hewlett-Packard Professional Books. 2000

50

Outline

Goals for parallelizing code
Basic issues with parallelism
Parallel computing paradigms
Code design

Shared memory
Distributed memory

Debugging code
Performance analysis
Summary

51

Debugging

Three general techniques
Print and flush

Bisect code with print statements
Flush print statement

Command line debugger
gdb

GUI debugger
Totalview

52

Debugging Resources

gdb
Basic tutorials
http://www.cs.princeton.edu/~benjasik/gdb/gdbtut.html
Detailed
http://www.delorie.com/gnu/docs/gdb/gdb_toc.html
Parallel
http://heather.cs.ucdavis.edu/~matloff/pardebug.html

Totalview
http://www.llnl.gov/computing/tutorials/totalview/

53

Outline

Goals for parallelizing code
Basic issues with parallelism
Parallel computing paradigms
Code design

Shared memory
Distributed memory

Debugging code
Performance analysis
Summary

54

Performance

Two general approaches
Command line profilers

Compile switches are necessary
Post-run analysis code

“Homemade” timers
Requires some programming sophistication
Necessary when code is not well-designed

55

Performance
measurement
references

Serial gprof
http://www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html

Parallel gprof
http://www.llnl.gov/computing/tutorials/performance_tools/#gprof

NOTE: check man pages for your compiler to ensure correct
switches

56

Outline

Goals for parallelizing code
Basic issues with parallelism
Parallel computing paradigms
Code design

Shared memory
Distributed memory

Debugging code
Performance analysis
Summary

57

Summary

Start with good code
Understand your system before you start
Decompose the problem to fit your system
Pass the data you need to pass

Synchronize communication
OR

Make sure code arrives before it is needed

