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Multifractals – why use them?
We suspect that a dataset is self-similar across many 
scales. We want to verify and quantify this similarity so 
as to yield:

– a more compact, simplified representation;

– better predictions via pattern characterization;

– signal separation.

We want to estimate the scaling properties of a broad 
statistical distribution.

– We describe how algorithms scale according to 
deterministic “worst case” time complexity, ex O(N2). 
However, the data we operate on is often stochastic with 
a distribution that varies in time and space.
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Multifractals – why use them?
We are working with a process known to be 
multiplicative, and we want to understand how the 
system will behave after some number of iterations.

We want to understand the extent to which an event is 
“rare” in relation to (or with respect to) multiple scales.
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Multifractals – why use them?

Multifractal analysis concerns the scaling behavior of a 
distribution of measures in a geometrical and 
statistical fashion.

– Signal self-similarity

– Broad probability distributions

– Multiplicative processes

– Rare events
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Outline
1. Theoretical background

• Fractals and fractal dimension
• Multifractal measures

2. Computational techniques
• Method of moments

• Time series
• Planar data

• Wavelet Transform Modulus Maxima

3. Applications of multifractal measures
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A fractal is loosely defined as a geometric shape having 
symmetry of scale

• A fractal is a set, which is (by definition) a collection of objects, in 
this case points.

• Each point is a member of the set, or it is not. The measure on 
each point is therefore drawn from {0,1} 
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Fractal objects can’t be measured by usual ways

How can we measure the length of the Koch curve?

http://classes.yale.edu/fractals/

n Segment 
length

Number of 
segments

Ln L1m

0 1 1 1 1 m

1 1/3 4 4/3 1.33 m

2 1/32 42 (4/3)2 1.77 m

3 1/33 43 (4/3)3 2.370 m

… … … … …

24 1/324 424 (4/3)24 996 m

… … … … …

128 1/3128 4128 (4/3)128 9.82x1015 m

n 1/3n 4n (4/3)n ∞

The concept of dimension is more appropriate to characterize fractal objects
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There are three categories of fractal constructions

• Iterated function systems

• Escape time fractals

• Random walks
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Iterated function systems are formed from the repetitive 
action of a rule

Deterministic Probabilistic
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Escape-time fractals are formed from a recurrence relation 
at every point in space

czz nn +=+
2

1

The Mandelbrot set is a well-known 
example.

It is calculated by the iterative rule, 
with z0 = 0 and c is on the complex 
plane

If z diverges, c in not in the 
Mandelbrot set

From http://hypertextbook.com/chaos/diagrams/con.2.02.gif
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http://en.wikipedia.org/wiki/Brownian_tree

Random walks are governed by stochastic processes

•Brownian motion

•Levy flight

•Fractal landscape

•Brownian tree

•Diffusion-limited aggregation
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Fractal dimensions measure how a set fills space

• Box Counting Dimension
Measure is the number of covers that 
contain a point of the set 

• Information Dimension
Measure is the sum of the 
probabilities of finding a 
point of the set in the kth 
cover

• Correlation Dimension 
Measure is the number of pairs 
of points whose distance apart 
is less than r
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A Multifractal is a set composed of a multitude of 
interwoven subsets, each of differing fractal dimension.

Each point is associated with a measure, which is typically a non-negative 
(often normalized) real value.

The data in a multifractal set may not “appear” to be self-similar, because 
so many individual fractal subsets are present.

A multifractal set is typically represented by the spectrum of these scaling 
dimensions
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The f(α) singularity spectrum and the generalized fractal 
dimensions are common multifractal measures

The f(α) singularity spectrum:

For a usual fractal set on which a measure μ is defined, the 
dimension D related the increase of μ with the size ε of a ball 
Bx (ε) centered at x:

But the measure can display different scaling from point to point →

 
multifractal measure

The local scaling behavior becomes important

Where α(x) represents the singularity strength at point x
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To look at the local scaling, we
1. cover the support of the measure with boxes of radius ε

2. Look at the scaling in each box

3. Count the number of boxes that scale like εα for a given α to get

Nα

 

(ε) can be seen as a histogram

f(α) describes how Nα

 

(ε) varies when ε → 0

f(α) is defined as the fractal dimension of the set of all points x such that 
α(x) = α

)(~)( α
α εε fN −
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For time series, the singularities represent the cusps and 
steps in the data

From http://www.physionet.org/tutorials/multifractal/behavior.htm

A typical Taylor expansion can’t represent the series locally, and we must write

or alternatively

i
iiii ttattattattaatf α

α )(...)()()()( 3
3

2
210 −++−+−+−+=

i

iin ttattPtf α
α −≤−− )()(

and αi is the largest exponent such 
that there exist a polynomial Pn (x) 
satisfying the inequality
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The generalized fractal dimensions provide another 
representation of the multifractal spectrum

The dimensions Dq correspond to scaling exponents for the qth moments of the 
measure μ

As before, the support of the measure is covered with boxes Bi (ε) of size ε, and 
the partition function is defined as

In the limit ε→0+, Z(q,ε) behaves as a power law

And the spectrum is obtained from the relation

∑
=

=
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Some well known dimensions commonly cited in the 
literature can be found as points on the multifractal spectrum 

When q = 0; the definition becomes the capacity dimension
When q = 1; the definition becomes the information dimension
When q = 2; the definition becomes the correlation dimension

Provides a selective characterization of the nonhomogeneity of the 
measure, positive q’s accentuating the densest regions and negative q’s the 
smoothest regions.
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These two spectra can be related 

For a scale ε, we postulate a distribution of α’s in the form ρ(α)ε-f(α) and 
introduce in the partition function

In the limit ε→0+, this sum is dominated by the term εmin(qα-f(α))

The τ(q) spectrum, thus the Dq spectrum, is obtained by the Legendre 
transform of the f(α) singularity spectrum

∫ −≅ αεαρε αα dqZ fq )()(),(

))((min)( αατ
α
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Relation between τ(q) and f(α)

))((min)( αατ
α
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Example: binomial cascade

Consider the following multiplicative 
process on the unit interval S = [0,1]:

Split S in 2 parts of equal length d=2-1

Left half is given a fraction a of the 
population

Right half is given a fraction 1-a of the 
population

Repeat for d=2-2

…

a=0.75
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Example: binomial cascade

M1 = μ0 , μ1

M2 = μ0μ0 , μ0μ1 , μ1μ0 , μ1μ1

M3 = μ0μ0μ0 , μ0μ0μ1 , μ0μ1μ0 , μ0μ1μ1 , μ1μ0μ0

 

, 
μ1μ0μ1 , μ1μ1μ0 , μ1μ1μ1

…

Binomial cascade has the same structure as 
binary numbers. 

The cascade can be represented by 

Where n is the number of 1 in binary 
representation and the length of the series is 
N=2nmax

Decimal Binary Bit count

1 1 1

2 10 1

3 11 2

4 100 1

5 101 2

6 110 2

)1()1( max)1( −−− −= knnkn
k aax
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The sequence of mass exponents

Scaling of the partition function: )(~)( q

i

q
iqZ τεμε ∑=

The mass exponent is given by: 
ε

ε
τ

ε ln
)(ln

lim)(
0

qZ
q

→
=

The partition function is equivalent to a weighted box counting

The exponents describe how the measures (probabilities) μi scale with ε

q→ -∞ : τ(q) → qαmin

q = 0 : τ(q) = -D

q = 1 : τ(q) = 0

q → ∞ : τ(q) → qαmax
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The sequence of mass exponents
q=0 → μi

q=0 = 1 and Z0 (ε) is simply the number of boxes needed to cover the set

τ(0) = -D equals the box counting dimension

Large positive q’s favor the contribution of cells with larger μi

Large negative q’s favor the contribution of cells with lower μi

q→ -∞ : τ(q) → qαmin

q = 0 : τ(q) = -D

q = 1 : τ(q) = 0

q → ∞ : τ(q) → qαmax
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The Holder exponent

α : singularity strength, (local) Holder exponent

The span of α describes the different subsets of singularities

Monofractal: a single point

Multifractal: a distribution of points
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The singularity spectrum

f(α) :

 

the fractal dimension of the fractal set having Holder exponent α

The maximum value of the subset Sα

 

equals the fractal dimension of the 
support of the measure. It occurs at q = 0.
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The singularity spectrum

The point intersection f(α) = α is the fractal dimension of the measure

It also corresponds to q = 1
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The singularity spectrum

The moments q are related to the singularity spectrum

For values q > 1, the strongly singular measures are enhanced

For values q < 1, the less singular areas are emphasized
q

q = 1

q = 2

q = ∞ q = -∞

q = 0

q = -1
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The singularity spectrum
q α = dτ(q)/dq f = qα +τ(q)

q → ∞ →αmax =lim(lnμ- /lnε) → 0

q = 0 α0 fmax = D

q = 1 α1 = lim(S(ε)/lnε) fs = α1 = S

q → -∞ →αmin =lim(lnμ+ /lnε) → 0
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Conclusions - Theory
• The concept of dimension is appropriate to 

characterize complex data
• A spectrum of dimensions can be necessary to 

fully characterize the statistics of complex data
• The partition function is equivalent to a weighted 

box counting
• The sequence of mass exponents describes 

how the partition function scales with ε
• The singularity spectrum describes the fractal 

dimension of the different subsets having 
different Holder exponents



DOE Summer School in Multiscale Mathematics and High Performance Computing

Algorithms
• The method of moments

– Time series
– Planar data (images)

• The wavelet transform modulus maxima
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The method of moments – time series
• A simple, direct approach
• Consider a time series x1 , x2 , x3 , …, xN

• Put the data in a histogram
– Select bin size ε
– The maximum xi is denoted M and 

minimum xi is denoted m
– The bin sizes are [m,m+ε],         

[m+ε, m+2ε], …, [m+kε, M]

• Count the number of xi in every bin and 
denote by nj . Ignore the empty bins.
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The method of moments – time series
• Compute the partition function for q= -20…20

• Repeat, from building the histogram, with a smaller ε getting 
closer to 0, to build the partition function to different ε

• For different q, find the slope of the plot log(Zq) vs log(ε) to 
determine τ(q)

• We now have the τ(q) spectrum, we need to do its Legendre 
transform to get the f(α) spectrum

q
k

qq NnNnZ )/(...)/( 0 ++=ε
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The method of moments – time series
• Start with α = 0.1, or any value close to 0

• Compute min(αq - τ(q)) over all q values to get f(α). Ignore 
negative values

• Increase α until f(α) becomes negative again
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The method of moments – Planar data
• Same concept, but for 2d – or any number of dimension

• Subdivide the plane in smaller squares of side length ε1 , 
then ε2 , ε3 , and so on

• Count the number of points in each square of side length ε1 . 
Denote these n(1, ε1 ), n(2, ε1 ), n(3, ε1 ), …

• Count the number of points in each square of side length ε2 . 
Denote these n(1, ε2 ), n(2, ε2 ), n(3, ε2 ), …

From http://classes.yale.edu/fractals/
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The method of moments – Planar data
• Same concept, but for 2d – or any number of dimension

• Build the partition function by computing the q moments for 
size ε1

• Repeat for diffent ε

From http://classes.yale.edu/fractals/

...)/),3(()/),2(()/),1(( 111 +++= qqqq NnNnNnZ εεεε

...)/),3(()/),2(()/),1(( 222 +++= qqqq NnNnNnZ εεεε
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The wavelet transform modulus maxima 
method (WTMM)

• Wavelet transform, introduced to analyze seismic data 
and acoustic signals, is used in a wide diversity of fields

• The wavelet transform (WT) of a function s corresponds 
in decomposing it into elementary space-scale 
contribution, the wavelets

• The wavelets are constructed from a single function ψ
 that is dilated and translated
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Different types of wavelets can be used
• Haar wavelet

• Gaussian function and its 
derivatives

1
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The wavelet transform of a function s(x) is defined as

Where    is the complex conjugate of ψ, b denotes 
the translation of the wavelet and a its dilation.

The operation is similar to the convolution of s(x) 
and the wavelet at a given scale

∫
∞

∞−

⎟
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Example of wavelet transform: Devil’s staircase

The staircase is obtained by 
summing over the triadic Cantor 
set

The wavelet transform reveals 
the singular behavior of the 
measure
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The wavelet transform can be used for singularity 
detection

• Before, we relied on boxes of length size ε to 
cover the measure, now we use wavelets of 
scale a

• The wavelet is a more precise box. One can 
even choose a different box type for different 
applications

• The partition function will be built from the 
wavelet coefficients
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A simple method to build the partition function 
would be

But nothing prevents Wψ

 

from vanishing and Z 
would diverge for q<0.

dxaxsWaqZ
q

∫= ),]([),( ψ

The Wavelet Transform Modulus Maxima Method 
(WTMM) changes the continuous sum over 
space into a discrete sum over the local 
maxima of |Wψ

 

[s](x,a)| considered as a function of 
x
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The skeleton of the wavelet transform is created 
by all the maxima lines of the WT

Let L(a0 ) be the set of all the maxima lines that exist at the 
scale a0 and which contain maxima at any scale a ≤ a0

We expect the number of maxima lines to diverge in the 
limit a→0



DOE Summer School in Multiscale Mathematics and High Performance Computing

The TWMM skeleton enlightens the hierarchical 
organization of the singularities

The partition function will be defined as

The skeleton indicates how to position the boxes on the 
measure

∑
∈ ∈

⎟
⎠
⎞

⎜
⎝
⎛=

)( )',(
)',]([sup),(

aLl

q

lax
axsWaqZ ψ



DOE Summer School in Multiscale Mathematics and High Performance Computing

The sup defines a scale-adaptative partition 
preventing divergences to show up

And again, Z(q,a)~aτ(q), so the familiar exponents can be 
determined

∑
∈ ∈

⎟
⎠
⎞

⎜
⎝
⎛=

)( )',(
)',]([sup),(

aLl

q
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From Arneodo et al. Physica A 213 (1995) 232-275
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Results for the Devil’s staircase

From Arneodo et al. Physica A 213 (1995) 232-275



DOE Summer School in Multiscale Mathematics and High Performance Computing

The order of the wavelet matters
• It can be shown that 

in the limit a→0+, provided the number of vanishing 
moments of the wavelet nψ

 

>α(x0 )

• If nψ

 

<α(x0 ), a power law behavior still exist but with a 
scaling exponent nψ

• Around x0 , the faster the wavelet transform decreases 
when the scale a goes to zero, the more regular s is around 
that point

)(
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0~),]([ xaaxsW α
ψ

ψ
ψ
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The WTMM reveals phase transitions in the 
multifractal spectra

• Lets assume f(x) = s(x) + r(x)
– s(x) is a multifractal singular function with αmax < ∞
– r(x) is regular function (C∞)

• nψ

 

>α(x0 ) is impossible because of r(x)

• The set of maxima lines will be composed of two disjoint 
sets from s(x) (slightly perturbated) and r(x)

• The partition function splits into two parts
ψτ qnq

rsf aaaqZaqZaqZ s ++= )(~),(),(),(
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The WTMM reveals phase transitions in the 
multifractal spectra

• There will be a critical value qcrit <0 for which there is a 
phase transition (a discontinuity):

• This discontinuity in the spectrum expresses the 
breakdown of the self-similarity of the singular signal s(x) 
by the perturbation of r(x)

ψτ qnq
rsf aaaqZaqZaqZ s ++= )(~),(),(),(

⎩
⎨
⎧

<
>

=
crit

crits

qqqn
qqq

q
for
for)(

)(
ψ

τ
τ



DOE Summer School in Multiscale Mathematics and High Performance Computing

Checking whether τ(q) is sensitive to the order nψ

 of ψ is a very good test for the presence of 
highly regular parts in the signal

From Arneodo et al. Physica A 213 (1995) 232-275



DOE Summer School in Multiscale Mathematics and High Performance Computing

When the data shows clear trends, removing them 
will significantly increase the accuracy of the 
measure

• Removing trends makes the data more singular

• But filtering removes long-range correlations in 
the signal, which has an impact on the 
determination of the singularity spectrum

• Requires judgment
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Conclusion - Algorithms
• Wavelet transform reveals the scaling structure 

of the singularities

• The method is scale-adaptative

• The method reveals non-singular behavior

• The formalism offers a clear link to 
thermodynical concepts such as entropy, free 
energy, …
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Applications
• A wide variety of system exhibit multifractal 

properties
• Stock market data

AIVSX 

CSCO 

APPL 

GE 

http://classes.yale.edu/fractals/
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The branching of lungs
•The structure of the lungs as a 
fractal geometry

Bennet et al. Whitepaper of the University of California, 2001 - neonatology.ucdavis.edu
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Web data
• Internet data has been studied extensively

Menasce et al. A hierarchical and multiscale approach to analyze E-business workloads, Performance Evaluation 2003, 33-57.
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Internet traffic
• Internet traffic
• Traffic in general: roads, flows, …

Abry et al. IEEE Signal Processing Magazine 19, 28--46 
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Physiological data
• Neuron signals
• Collection of neurons
• Heart

From http://www.physionet.org/tutorials/multifractal/humanheart.htm
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Projects at PNNL
• Solid-state studies

• Internet activity

• Protein sequence data

• EEG data

• Energy markets, energy grid behavior

• Light detection and ranging (LIDAR)
– Effect of turbulence on laser propagation



DOE Summer School in Multiscale Mathematics and High Performance Computing

Conclusion
• Many systems have fractal geometry in nature

• Multifractals provide information on
– Local scaling 
– Dimension of sets having a given scaling
– Statistical representation of data, especially well 

suited for distributions with long tails

• Several techniques exist to calculate the 
singularity spectrum



DOE Summer School in Multiscale Mathematics and High Performance Computing

References
• Feder, Fractals, Plenum Press (1988).
• Halsey et al. “Fractal measures and their singularities: the characterization of 

strange sets,” Phys. Rev. A 33, 1141-1151 (1986).
• Muzy et al. “Multifractal formalism for fractal signals: the structure-function 

approach versus the wavelet-transform modulus-maxima method,” Phys. 
Rev. E 47, 875-884 (1993).

• Arneodo et al. “The thermodynamics of fractals revisited with wavelets,” 
Physica A 213, 232-275 (1995).

• Kantelhardt et al. “Multifractal detrended fluctuation analysis of nonstationary 
time series,” Physica A 316, 87-114 (2002).

• Gleick, Chaos, The Viking Press (1987).

Acknowledgements
• Rogene Eichler West, PNNL
• Paul D. Whitney, PNNL

Nicolas Hô, nicolas.ho@pnl.gov


	An introduction to multifractal measurements
	Multifractals – why use them?
	Multifractals – why use them?
	Multifractals – why use them?
	Outline
	Slide Number 6
	Slide Number 7
	There are three categories of fractal constructions
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Example: binomial cascade
	Example: binomial cascade
	The sequence of mass exponents
	The sequence of mass exponents
	The Holder exponent
	The singularity spectrum
	The singularity spectrum
	The singularity spectrum
	The singularity spectrum
	Conclusions - Theory
	Algorithms
	The method of moments – time series
	The method of moments – time series
	The method of moments – time series
	The method of moments – Planar data
	The method of moments – Planar data
	The wavelet transform modulus maxima method (WTMM)
	Different types of wavelets can be used
	The wavelet transform of a function s(x) is defined as
	Example of wavelet transform: Devil’s staircase
	The wavelet transform can be used for singularity detection
	A simple method to build the partition function would be
	The skeleton of the wavelet transform is created by all the maxima lines of the WT
	The TWMM skeleton enlightens the hierarchical organization of the singularities
	The sup defines a scale-adaptative partition preventing divergences to show up
	Results for the Devil’s staircase
	The order of the wavelet matters
	The WTMM reveals phase transitions in the multifractal spectra
	The WTMM reveals phase transitions in the multifractal spectra
	Checking whether t(q) is sensitive to the order ny of y is a very good test for the presence of highly regular parts in the signal
	When the data shows clear trends, removing them will significantly increase the accuracy of the measure
	Conclusion - Algorithms
	Applications
	The branching of lungs
	Web data
	Internet traffic
	Physiological data
	Projects at PNNL
	Conclusion
	References

