
Barry Smith
Mathematics and Compute Science Division

Argonne National Laboratory

July 1, 2007
 DOE summer school in Multiscale Mathematics

and High Performance Computing

Multigrid
Algebraic Solvers

I (someone) tried multigrid on this
problem and it didn’t work (well).

I (someone) tried multigrid on this
problem and it didn’t work (well).

Multigrid is not an algorithm, it is a
philosophy (family of algorithms).

Discretizations

(0,0)

(1,1)

Discretizations

(0,0)

(1,1)

y1

y j−1
y j
y j+1

xixi−1 xi+1

Multigrid Basics

−∇ · κ(x)∇u = f (x)

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Multigrid Basics

−∇ · κ(x)∇u = f (x)
Smoothed

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Multigrid Basics

−∇ · κ(x)∇u = f (x)

Corrected

Single-step Solvers
xnew ⇐ x+B(b−Ax) = x+BA(x∗ − x) = x+Be

Gauss-Seidel (smoothing)

= x+(L+D)−1(b− (L+D+U)x) = (L+D)−1(b−Ux)

Incomplete LU factorization

= x+Û−1L̂−1(b−Ax)

Full LU factorization

Multi-step Solvers
Given

compute xn+1 = αxn−1 +βxn + γx̂n+1

inexpensively that is better in some measure.

•Conjugate gradient method
•Generalized minimum residual
•Quasi-minimal residual
•......

Black-box on A, B and x

xn−1,xn, x̂n+1 = xn +B(b−Axn)

Composition of Preconditioners

x⇐ x+B(b−Ax) = x+BA(x∗− x) = x+Be
Constructing a preconditioner from two preconditioners.

Multiplicative version

Additive version

A linear operator that improves an approximate solution to a linear system.

y⇐ x+B1(b−Ax)
x⇐ y+B2(b−Ay)

x⇐ x+(B1+B2−B2AB1)(b−Ax)

x⇐ x+(B1+B2)(b−Ax)

in some sense

Composition of Preconditioners

x⇐ x+B(b−Ax) = x+BA(x∗− x) = x+Be
Constructing a preconditioner from two preconditioners.

Multiplicative version

Additive version

A linear operator that improves an approximate solution to a linear system.

y⇐ x+B1(b−Ax)
x⇐ y+B2(b−Ay)

x⇐ x+(B1+B2−B2AB1)(b−Ax)

x⇐ x+(B1+B2)(b−Ax)

in some sense

Composition of Preconditioners

x⇐ x+B(b−Ax) = x+BA(x∗− x) = x+Be
Constructing a preconditioner from two preconditioners.

Multiplicative version

Additive version

A linear operator that improves an approximate solution to a linear system.

y⇐ x+B1(b−Ax)
x⇐ y+B2(b−Ay)

x⇐ x+(B1+B2−B2AB1)(b−Ax)

x⇐ x+(B1+B2)(b−Ax)

in some sense

Composition of Preconditioners

x⇐ x+B(b−Ax) = x+BA(x∗− x) = x+Be
Constructing a preconditioner from two preconditioners.

Multiplicative version

Additive version

A linear operator that improves an approximate solution to a linear system.

y⇐ x+B1(b−Ax)
x⇐ y+B2(b−Ay)

x⇐ x+(B1+B2−B2AB1)(b−Ax)

x⇐ x+(B1+B2)(b−Ax)

in some sense

Composition of Preconditioners

x⇐ x+B(b−Ax) = x+BA(x∗− x) = x+Be
Constructing a preconditioner from two preconditioners.

Multiplicative version

Additive version

A linear operator that improves an approximate solution to a linear system.

y⇐ x+B1(b−Ax)
x⇐ y+B2(b−Ay)

x⇐ x+(B1+B2−B2AB1)(b−Ax)

x⇐ x+(B1+B2)(b−Ax)

in some sense

Preconditioners Defined by
(near) Galerkin Process

Define restriction and interpolation operators
Ri maps from a right hand side to a smaller,
weighted right hand side.
RiT interpolates from a subspace of the solution
space to the entire solution space.

Define preconditioners by
Bi = RTi (RiAR

T
i)
−1Ri Bi = RTi SiRi

Special cases - Ri has a single 1 per row, Ri A RiT is a submatrix of A

 overlapping Schwarz methods - selects all unknowns in a local domains
 field split methods - selects the ith component at each grid point

multigrid - maps to a coarse grid

Preconditioners Defined by
(near) Galerkin Process

Define restriction and interpolation operators
Ri maps from a right hand side to a smaller,
weighted right hand side.
RiT interpolates from a subspace of the solution
space to the entire solution space.

Define preconditioners by
Bi = RTi (RiAR

T
i)
−1Ri Bi = RTi SiRi

Special cases - Ri has a single 1 per row, Ri A RiT is a submatrix of A

 overlapping Schwarz methods - selects all unknowns in a local domains
 field split methods - selects the ith component at each grid point

multigrid - maps to a coarse grid

Preconditioners Defined by
(near) Galerkin Process

Define restriction and interpolation operators
Ri maps from a right hand side to a smaller,
weighted right hand side.
RiT interpolates from a subspace of the solution
space to the entire solution space.

Define preconditioners by
Bi = RTi (RiAR

T
i)
−1Ri Bi = RTi SiRi

Special cases - Ri has a single 1 per row, Ri A RiT is a submatrix of A

 overlapping Schwarz methods - selects all unknowns in a local domains
 field split methods - selects the ith component at each grid point

multigrid - maps to a coarse grid

Preconditioners Defined by
(near) Galerkin Process

Define restriction and interpolation operators
Ri maps from a right hand side to a smaller,
weighted right hand side.
RiT interpolates from a subspace of the solution
space to the entire solution space.

Define preconditioners by
Bi = RTi (RiAR

T
i)
−1Ri Bi = RTi SiRi

Special cases - Ri has a single 1 per row, Ri A RiT is a submatrix of A

 overlapping Schwarz methods - selects all unknowns in a local domains
 field split methods - selects the ith component at each grid point

multigrid - maps to a coarse grid

Preconditioners Defined by
(near) Galerkin Process

Define restriction and interpolation operators
Ri maps from a right hand side to a smaller,
weighted right hand side.
RiT interpolates from a subspace of the solution
space to the entire solution space.

Define preconditioners by
Bi = RTi (RiAR

T
i)
−1Ri Bi = RTi SiRi

Special cases - Ri has a single 1 per row, Ri A RiT is a submatrix of A

 overlapping Schwarz methods - selects all unknowns in a local domains
 field split methods - selects the ith component at each grid point

multigrid - maps to a coarse grid

Preconditioners Defined by
(near) Galerkin Process

Define restriction and interpolation operators
Ri maps from a right hand side to a smaller,
weighted right hand side.
RiT interpolates from a subspace of the solution
space to the entire solution space.

Define preconditioners by
Bi = RTi (RiAR

T
i)
−1Ri Bi = RTi SiRi

Special cases - Ri has a single 1 per row, Ri A RiT is a submatrix of A

 overlapping Schwarz methods - selects all unknowns in a local domains
 field split methods - selects the ith component at each grid point

multigrid - maps to a coarse grid

Composition of Galerkin
Preconditioners

 R1 S1 R1T

 R2
 R2T

 S2

 R2
 R2T

 S2

+
x⇐ y+RT2S2R2(b−Ay)y⇐ RT1S1R1(b−Ax)

 Multiplicative

Composition of Galerkin
Preconditioners

 R1 S1 R1T

 R2
 R2T

 S2

 R2
 R2T

 S2

+
x⇐ y+RT2S2R2(b−Ay)y⇐ RT1S1R1(b−Ax)

 Multiplicative

 R1

 S1

 R1T

 R2 R2T

 S2
+

Additive

x⇐ x+(RT1S1R1+RT2S2R2)(b−Ax)

Jacobi and Gauss-Seidel as
Galerkin Composites

Bi = RT
i (RiART

i)−1Ri

Jacobi and Gauss-Seidel as
Galerkin Composites

Bi = RT
i (RiART

i)−1Ri

Ri = [0,0, ...,1,0, ...0]

Jacobi and Gauss-Seidel as
Galerkin Composites

Bi = RT
i (RiART

i)−1Ri

Ri = [0,0, ...,1,0, ...0] RiART
i = Aii

Jacobi and Gauss-Seidel as
Galerkin Composites

Bi = RT
i (RiART

i)−1Ri

Ri = [0,0, ...,1,0, ...0] RiART
i = Aii

Bi = [0,0, ...,1,0, ...0]T A−1
ii [0,0, ...,1,0, ...0]

Multigrid Fundamentals

 “Smoother” removes “high-frequency” error

 Stagnates on low-frequency error

Multigrid Fundamentals

 “Smoother” removes “high-frequency” error

 Stagnates on low-frequency error

xnew ⇐ x+B(b−Ax) = x+Be

Multigrid Fundamentals

 “Smoother” removes “high-frequency” error

 Stagnates on low-frequency error

xnew ⇐ x+B(b−Ax) = x+Be

Rce

Multigrid Fundamentals

 “Smoother” removes “high-frequency” error

 Stagnates on low-frequency error

xnew ⇐ x+B(b−Ax) = x+Be

A−1
c Rce

Multigrid Fundamentals

 “Smoother” removes “high-frequency” error

 Stagnates on low-frequency error

xnew ⇐ x+B(b−Ax) = x+Be

A−1
c RceRT

c

Multigrid Fundamentals

 “Smoother” removes “high-frequency” error

 Stagnates on low-frequency error

xnew ⇐ x+B(b−Ax) = x+Be

A−1
c RceRT

c

Rc = Rc+1→cRc+1

Why Compose?

Multigrid

A specific set of techniques for composing Galerkin-like
preconditioners (simple solvers).

Uses recursion, as an optimization, for efficient
implementations.

Additive Multigrid
∑
c

RT
c S−1

c Rc

Additive Multigrid
∑
c

RT
c S−1

c Rc

-pc_mg_type additive

Additive Multigrid
∑
c

RT
c S−1

c Rc

∑
c

RT
c ∑

i
RT

ci
A−1

cii
RciRc

-pc_mg_type additive

-mg_levels_pc_type jacobi

Additive Multigrid
∑
c

RT
c S−1

c Rc

∑
c

RT
c ∑

i
RT

ci
A−1

cii
RciRc

-pc_mg_type additive

-mg_levels_pc_type jacobi

-mg_levels_pc_type sor

Additive Multigrid
∑
c

RT
c S−1

c Rc

∑
c

RT
c ∑

i
RT

ci
A−1

cii
RciRc

-pc_mg_type additive

-mg_levels_pc_type jacobi

-mg_levels_pc_type sor
-mg_levels_ksp_type preonly

Multiplicative
Additive

 R1

 S1

 R1T

 S3 +

 R1

 S1

 R1T
 R2 R2T

 S3 +

Multiplicative
Additive

 R1

 S1

 R1T

 S3 +

 R1

 S1

 R1T
 R2 R2T

 S3 +

 S3

 R2
 R2T

 R1T
 R1

 S1
 S2

Multigrid

 S1

+

r

r +

+ S2

 R2

 S1

 S0

 R1 R1T

 R2T

 S1

 S2

Multigrid

 S1

+

r

r +

+ S2

 R2

 S1

 S0

 R1 R1T

 R2T

 S1

 S2

 S3

 R2
 R2T

 R1T
 R1

 S1
 S2

-pc_mg_type multiplicative
-pc_mg_smoothdown 0, 1, 2,..
-pc_mg_smoothup 0, 1, 2, ...
-pc_mg_cycles 1 or 2

r

r +

+ S2

 R2

 S1 S0 R1

 R2T S1

 S2

 R1T

-pc_mg_type multiplicative
-pc_mg_smoothdown 0, 1, 2,..
-pc_mg_smoothup 0, 1, 2, ...
-pc_mg_cycles 1 or 2

r

r +

+ S2

 R2

 S1 S0 R1

 R2T S1

 S2

 R1T

r

r +

+ S2

 R2

 S1

 S0

 S1

 S2

+r

http://localhost/~bsmith/petsc-dev/src/ksp/pc/impls/mg/mg.c.html
http://localhost/~bsmith/petsc-dev/src/ksp/pc/impls/mg/mg.c.html

-pc_mg_type cascadic

 S0

 R2T S1

 S2

 R1T

b

-pc_mg_type cascadic

 S0

 R2T S1

 S2

 R1T

b

 S0

 R2T S1

 S2

 R1T

b

 R1

+

-pc_mg_type full

Multigrid Methods

 S1

+

Smoothing: Gauss-Seidel

xnew = S(xold ,b)

Multigrid Methods

 S1

+

Smoothing: Gauss-Seidel

Coarse Grid Correction

xnew = S(xold ,b)

xnew = xold +RT c

Jcc = R(b− Jxold)

Multigrid Building Blocks

• Smoothers

• Order of Corrections

• Krylov Accelerators

• Alternative Interpolations

V-cycle Multigrid

 S1

+

r

r +

+ S2

 R2

 S1

 S0

 R1 R1T

 R2T

 S1

 S2

V-cycle Multigrid

 S1

+

r

r +

+ S2

 R2

 S1

 S0

 R1 R1T

 R2T

 S1

 S2

r

r +

+ S2

 R2

 S1

 S0

 S1

 S2

+r

W-cycle Multigrid

Full V-cycle Multigrid

 S1

+

 S0

 R2T S1

 S2

 R1T

b

 R1

+

Full V-cycle Multigrid

 S1

+

 S0

 R2T S1

 S2

 R1T

b

 R1

+

Krylov Acceleration

• Extrapolation techniques

• Examples: conjugate gradients, GMRES

• Trivially coded (physics independent)

Model Problem

Driven cavity (fluid dynamics)

−"u−∇yΩ= 0
−"v+∇xΩ= 0

−"Ω+∇x(uΩ)+∇y(vΩ)−GR∇xT = 0
−"T +PR(∇x(uT)+∇y(vT)) = 0

Smoother (inner)
Robustification

4 by 4 coarse grid, 6 levels, ~262,000 unknowns

Smoother (inner)
Robustification

• ILU(0) preconditioner - 7,000+ iterations (5+min)

4 by 4 coarse grid, 6 levels, ~262,000 unknowns

Smoother (inner)
Robustification

• ILU(0) preconditioner - 7,000+ iterations (5+min)

• V-cycle

• SOR - diverged

4 by 4 coarse grid, 6 levels, ~262,000 unknowns

Smoother (inner)
Robustification

• ILU(0) preconditioner - 7,000+ iterations (5+min)

• V-cycle

• SOR - diverged

• ILU(0) - diverged

4 by 4 coarse grid, 6 levels, ~262,000 unknowns

Smoother (inner)
Robustification

• ILU(0) preconditioner - 7,000+ iterations (5+min)

• V-cycle

• SOR - diverged

• ILU(0) - diverged

• GMRES +

• SOR - diverged

4 by 4 coarse grid, 6 levels, ~262,000 unknowns

Smoother (inner)
Robustification

• ILU(0) preconditioner - 7,000+ iterations (5+min)

• V-cycle

• SOR - diverged

• ILU(0) - diverged

• GMRES +

• SOR - diverged

• ILU(0) - 18 iterations (17 secs)

4 by 4 coarse grid, 6 levels, ~262,000 unknowns

Iterations Time

0

27 3.68 secs

0

V-cycle (diverged)

Outer
 Robustification

Iterations Time

0

27 3.68 secs

0

V-cycle (diverged)

W-cycle

Outer
 Robustification

Iterations Time

0

27 3.68 secs

0

V-cycle (diverged)

W-cycle
Full W-cycle

Outer
 Robustification

Iterations Time

0

27 3.68 secs

0

V-cycle (diverged)

W-cycle
Full W-cycle
GMRES + Full W-cycle

Outer
 Robustification

Iterations Time

0

27 3.68 secs

0

V-cycle (diverged)

W-cycle
Full W-cycle
GMRES + Full W-cycle
GMRES + Full V-cycle

Outer
 Robustification

Iterations Time

0

27 3.68 secs

0

V-cycle (diverged)

W-cycle
Full W-cycle
GMRES + Full W-cycle
GMRES + Full V-cycle
GMRES + V-cycle

Outer
 Robustification

O(n) Method
• Smoothing is a purely local operation

•

• Work per iteration is O(n)

• Elliptic solutions at any point depend on all
forcing and boundary conditions.

• Global communication is achieved via
the coarser grids.

• Number of iterations bounded independent
of number of levels.

1+1/23 +1/26 + < 1

Sample Convergence

 0 1.461936698223e-01

 1 2.504698886662e-05
 2 8.869066880752e-12
 3 4.632334916516e-16

 0 1.461936698223e-01
 1 1.730679507450e-02
 2 3.028428095983e-03
 3 1.342233226408e-04
 4 5.257495967448e-06
 5 1.734237037343e-07

Nonlinear
iteration Residual 2-norm

Linear Residual 2-norm

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Problem Dependent Robustification

−∇ · (1− εsin(pπx))∇u = f (x)
ε≈ 1 p >> 1

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

2

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Problem Dependent Robustification

−∇ · (1− εsin(pπx))∇u = f (x)
ε≈ 1 p >> 1

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

2

Smoothed

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Problem Dependent Robustification

ε≈ 1 p >> 1

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

2

Smoothed

min
u

Z
(1− εsin(pπx))(∇u)2

Problem Dependent Robustification

ε≈ 1 p >> 1

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

2

min
u

Z
(1− εsin(pπx))(∇u)2

Coarse grid basis function

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0102030405060708090100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Problem Dependent Robustification

ε≈ 1 p >> 1

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

2

min
u

Z
(1− εsin(pπx))(∇u)2

Coarse grid basis function

DOE Parallel Multigrid Codes

• Algebraic

• LLNL: hypre BoomerAMG -

• SNL: Trilinos ML -

• Prometheus -

• Geometric

• LLNL: hypre

• ANL: PETSc

Accessing ML
 Parallel multilevel (smooth aggregation)

preconditioner from SNL (Ray Tuminaro et. al.)

 -pc_type ml

 -pc_ml_....

 Uses PETSc multigrid infrastructure - fills in the
slots of the PCMG (restriction/interpolation and
coarser grid operators).

 -pc_mg_...

Accessing boomerAMG

 Reasonably scalable algebraic multigrid solver
from LLNL (Rob Falgout et. al.)

 -pc_type hype -pc_hypre_type boomeramg

 -pc_hypre_boomeramg_....

 Does not use PETSc multigrid infrastructure

Equation Reformulation
Ex 1. First-Order System Least Squares (FOSLS)

!p+ k2 p = 0

Equation Reformulation
Ex 1. First-Order System Least Squares (FOSLS)

!p+ k2 p = 0

u−∇p = 0
∇ · u+ k2 p = 0

∇×u = 0

Equation Reformulation
Ex 1. First-Order System Least Squares (FOSLS)

!p+ k2 p = 0

u−∇p = 0
∇ · u+ k2 p = 0

∇×u = 0

min
u

Z
|u−∇p|2 + |∇ · u+ k2 p|2 + |∇×u|2

Equation Reformulation
Ex 1. First-Order System Least Squares (FOSLS)

!p+ k2 p = 0

u−∇p = 0
∇ · u+ k2 p = 0

∇×u = 0

min
u

Z
|u−∇p|2 + |∇ · u+ k2 p|2 + |∇×u|2

Ex 2. Physics-Based Preconditioning

• Geometric multigrid - coarser grids/
interpolation come from geometry.

➡Grids need not be nested: coarsening

• Algebraic multigrid - “interpolation” comes
from fine grid information (e.g. matrix
entries)

• Algorithmic multigrid - Preprocess the
equations into a formulation more
amendable to multigrid (e.g. hyperbolic to
parabolic)

Algorithmic-Geometric-Algebraic

Multigrid Robustification
• Enhanced smoothers

• point block smoothers

• overlapping blocks

• Krylov acceleration

• Krylov acceleration

• Full multigrid, W-cycle

• Operator (problem) dependent interpolation

• Equation reformulation

I (someone) tried multigrid on this
problem and it didn’t work (well).X

I (someone) tried multigrid on this
problem and it didn’t work (well).

Multigrid is not an algorithm, it is a
philosophy (family of algorithms).

X

