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Multigrid is not an algorithm, it is a
philosophy (family of algorithms).
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Single-step Solvers
X"V <=x+B(b—Ax) =x+BA(x" —x) = x+ Be

Gauss-Seidel (smoothing)
=x+(L+D) ' (b—(L4+D+U)x) = (L+D)" ' (b—Ux)

Incomplete LU factorization

—=x+U 'L 1 (b—Ax)

Full LU factorization




Multi-step Solvers

Given xn—l’xn7£n+1 = x" B(b—Axn)

compute xn—l—l __ OCXn_l 4 an _I_,Y)/C\n+1

inexpensively that is better in some measure.

Conjugate gradient method

Generalized minimum residual
Quasi-minimal residual

Black-box on A, B and x




Composition of Preconditioners

1N some sense

A linear operator that improves an approximate solution to a linear system.

x<=x+B(b—Ax) =x+BA(x" —x) =x+ Be

Constructing a preconditioner from two preconditioners.

y<&=X+ B1 (b — A)C)
x < y+ By(b— Ay)
Multiplicative version

X <<= X+ (Bl—l—Bz—BzABl)(b—AX)

Additive version

X <<= X1 (Bl+Bz)(b—AX)
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Composition of Preconditioners

1N some sense

A linear operator that improves an approximate solution to a linear system.

x<=x+B(b—Ax) =x+BA(x" —x) =x+ Be

Constructing a preconditioner from two preconditioners.

y<&=X+ B1 (b — A)C)
x < y+ By(b— Ay)
Multiplicative version

X <<= X+ (Bl—l—Bz—BzABl)(b—AX)

Additive version

x<:x+(B1+Bz)(b—Ax)




Preconditioners Defined by

(near) Galerkin Process
Define restriction and interpolation operators

Ri maps from a right hand side to a smaller,
weighted right hand side.
RiT interpolates from a subspace of the solution
space to the entire solution space.
Define preconditioners by
B;=RI'(RAR)™'R,  B,=R!SR,
Special cases - Ri has a single 1 per row, Ri A RTis a submatrix of A

overlapping Schwarz methods - selects all unknowns 1n a local domains

field split methods - selects the 1th component at each grid point

multigrid - maps to a coarse grid
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Composition of Galerkin
Preconditioners

y<=RISIR(b—Ax) x<y+RiS:R:(b— Ay)

]Ek Sl

Multiplicative

x <= x+ (RISIR, + R SHR,) (b — Ax)

Sih \
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Multigrid Fundamentals

& “Smoother” removes “high-frequency” error

& Stagnates on low-frequency error

X" <= x4+ B(b—Ax) = x+ Be

RT A;' Ree

1 >CRC—|—1




Why Compose?




Multigrid

A specific set of techniques for composing Galerkin-like
preconditioners (simple solvers).

Uses recursion, as an optimization, for etficient
implementations.
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Additive Multigrid
Y RIS;'R.

C

-pc_mg_type additive

Y RIY RIAR R,
C l

-mg_levels_pc_type jacobi

-mg_levels_ks e preonl
-mg_levels_pc_type s =B OPEP 4




Multiphicative

Additive

4
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-pc_mg_type multiplicative
-pc_mg_smoothdown 0, 1, 2,..
-pc_mg_smoothup 0, 1, 2, ...

-pc_mg_cycles 1 or 2




-pc_mg_type multiplicative
-pc_mg_smoothdown 0, 1, 2,..
-pc_mg_smoothup 0, 1, 2, ...

-pc_mg_cycles 1 or 2




Actual source code: mg.c

/%
Defines the multigrid preconditioner interface.

*f

#include sre/ksp/pe/impls/mg/mgimpl.h

PetscErroxrCode PCMGMCycle Private(PC_MG **mglevels,PetscTruth *converged)
{

PC MG *mg = *mglevels, *mgc;
PetascInt cycles = mg->cycles;

ESPSolve {mg->smoothd, mg->b,mg->x) ;
if (mg=>level) { /* not the coarsest grid */
{*mg=->residual) (mg->A,mg=->b, mg->x,mg=->r) ;

mge = *{mglevels - 1);
MatRestrict (mg->restrct,mg->r,mgc=->b);
VecSet (mge->x,0.0);
while {cycles-=) {
PCMGMCycle Private({mglevels-1,converged);
}
MatInterpolatehdd(mg=>interpolate, mgec=>x,mg=->x,Mg=>Xx) ;
ESPSolve (mg->smoothu,mg->b, mg->x) ;

}

return{0}:

}

P

PCMGCreate Private - Creates a PC MG structure for use with the
multigrid code. Level 0 is the coarsest. (But the
finest level is stored first in the array).

L
static PetscErrorCode PCMGCreate Private(MPI_ Comm comm,PetscInt levels,PC pc,MPI Comm *comms,PC_MG ***result)

{
PC_MG =EMG ;
PetacInt i
PetacMPIInt gize;
conat char *prefix;
BEC ipc;



http://localhost/~bsmith/petsc-dev/src/ksp/pc/impls/mg/mg.c.html
http://localhost/~bsmith/petsc-dev/src/ksp/pc/impls/mg/mg.c.html

-pc_mg_type cascadic




-pc_mg_type cascadic




Multigrid Methods

Smoothing: Gauss-Seidel

Kew — S(XOld,b)




Multigrid Methods

Smoothing: Gauss-Seidel

Kew — S(XOld,b)

Coarse Grid Correction

J.c = R(b— Jx°')

Xnew __ xald —I—RTC



Multigrid Building Blocks

Smoothers
Order of Corrections
Krylov Accelerators

Alternative Interpolations
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Full V-cycle Multigrid




Full V-cycle Multigrid

Krylov Acceleration

® Extrapolation techniques
® Examples: conjugate gradients, GMRES

® Trivially coded (physics independent)




Model Problem

Driven cavity (fluid dynamics)

—Au—V,Q=0

—Av+V, Q=0
—AQ+V,(uQ) + V,(vQ) — GRV,T =0
—AT +PR(V,(uT)+V,(vT)) =0




Smoother (inner)
Robustification

4 by 4 coarse grid, 6 levels, ~262,000 unknowns




Smoother (inner)

Robustification
4 by 4 coarse grid, 6 levels, ~262,000 unknowns

® |LU(O) preconditioner - 7,000+ iterations (5+min)




Smoother (inner)

Robustification
4 by 4 coarse grid, 6 levels, ~262,000 unknowns

® |LU(O) preconditioner - 7,000+ iterations (5+min)

® V-cycle

® SOR - diverged




Smoother (inner)

Robustification
4 by 4 coarse grid, 6 levels, ~262,000 unknowns

® |LU(O) preconditioner - 7,000+ iterations (5+min)

® V-cycle

® SOR - diverged
e |LU(O) - diverged




Smoother (inner)

Robustification
4 by 4 coarse grid, 6 levels, ~262,000 unknowns

® |LU(O) preconditioner - 7,000+ iterations (5+min)

® V-cycle

® SOR - diverged
e |LU(O) - diverged
e GMRES +

® SOR - diverged




Smoother (inner)

Robustification
4 by 4 coarse grid, 6 levels, ~262,000 unknowns

® |LU(O) preconditioner - 7,000+ iterations (5+min)

® V-cycle

® SOR - diverged
e |LU(O) - diverged
e GMRES +
® SOR - diverged
® |LU(O) - I8 iterations (|7 secs)
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" lterations O Ute r B Time
27 Robustification ~ 3:68secs

W-cycle

Full W-cycle |
GMRES + Full W-cycle V-cycle (diverged)
GMRES + Full V-cycle

GMRES + V-cycle




O(n) Method

Smoothing is a purely local operation
1+1/2°+1/2°+....< 1

Work per iteration is O(n)

Elliptic solutions at any point depend on all
forcing and boundary conditions.

Global commmunication is achieved via
the coarser grids.

Number of iterations bounded independent
of number of levels.




Sample Convergence

Nonlinear
iteration  Residual 2-norm

0 1.461936698223e-01 Linear Residual 2-norm

€0 | .461936698223¢-0

| 2.504698886662e-05 | | 730679507450e-02
2 8.869066880752e-12 5 3 028428095983¢-03
4.632334916516e-16 3 | 342233226408¢-04

4 5.257495967448e-06

5 1.734237037343e-07
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e~ 1 p>> 1
min/(l —esin(pmx))(Vu)?

u

Coarse grid basis function

VN




DOE Parallel Multigrid Codes

® Algebraic

® || NL: hypre BoomerAMG -
® SNL:Trilinos ML -
® Prometheus -

® Geometric

® || NL: hypre
e ANL: PETSc




Accessing ML

Parallel multilevel (smooth aggregation)
preconditioner from SNL (Ray Tuminaro et. al.)

-pc_type ml
=Pl ..

Uses PETSc multigrid infrastructure - fills in the
slots of the PCMG (restriction/interpolation and
coarser grid operators).

=pC=T =,




Accessing boomerAMG

& Reasonably scalable algebraic multigrid solver

from LLNL (Rob Falgout et. al.)

-pc_type hype -pc_hypre_type boomeramg

-pc_hypre_boomeramg_....

Does not use PETSc multigrid infrastructure




Equation Reformulation
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Equation Reformulation

Ex 1. First-Order System Least Squares (FOSLS)
Ap+kip=0
u—Vp=>0 Vxu=0
V-u+k’p=0

min/\u—Vp|2+ V-u+kpl* +|V x ul
U

Ex 2. Physics-Based Preconditioning




® Geometric multigrid - coarser grids/
interpolation come from geometry.

B Grids need not be nested: coarsening

® Algebraic multigrid - “interpolation” comes
from fine grid information (e.g. matrix
entries)

Algorithmic multigrid - Preprocess the
equations into a formulation more

amendable to multigrid (e.g. hyperbolic to
parabolic)

Algorithmic-Geometric-Algebraic




Multigrid Robustification

® Enhanced smoothers
® point block smoothers
® overlapping blocks
® Krylov acceleration
® Krylov acceleration
® Full multigrid, W-cycle
® Operator (problem) dependent interpolation

® Equation reformulation
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