Multigrid
Algebraic Solvers

Barry Smith
Mathematics and Compute Science Division
Argonne National Laboratory

July 1,2007
DOE summer school in Multiscale Mathematics
and High Performance Computing

| (someone) tried multigrid on this
problem and it didn’t work (well).

| (someone) tried multigrid on this
problem and it didn’t work (well).

Multigrid is not an algorithm, it is a
philosophy (family of algorithms).

Discretizations

(1,1)

Discretizations

(1,1)

Multigrid Basics
—V-k(x)Vu = f(x)

Multigrid Basics
—V-k(x)Vu = f(x)

Smoothed

Multigrid Basics

—V -k(x)Vu = f(x)

Corrected

T T

Single-step Solvers
X"V <=x+B(b—Ax) =x+BA(x" —x) = x+ Be

Gauss-Seidel (smoothing)
=x+(L+D) ' (b—(L4+D+U)x) = (L+D)" ' (b—Ux)

Incomplete LU factorization

—=x+U 'L 1 (b—Ax)

Full LU factorization

Multi-step Solvers

Given xn—l’xn7£n+1 = x" B(b—Axn)

compute xn—l—l __ OCXn_l 4 an _I_,Y)/C\n+1

inexpensively that is better in some measure.

Conjugate gradient method

Generalized minimum residual
Quasi-minimal residual

Black-box on A, B and x

Composition of Preconditioners

1N some sense

A linear operator that improves an approximate solution to a linear system.

x<=x+B(b—Ax) =x+BA(x" —x) =x+ Be

Constructing a preconditioner from two preconditioners.

y<&=X+ B1 (b — A)C)
x < y+ By(b— Ay)
Multiplicative version

X <<= X+ (Bl—l—Bz—BzABl)(b—AX)

Additive version

X <<= X1 (Bl+Bz)(b—AX)

Composition of Preconditioners

1N some sense

A linear operator that improves an approximate solution to a linear system.

x<x+B(b—Ax) =x+ BA(x"—x) =x+ Be

Constructing a preconditioner from two preconditioners.

y<&=X+ B1 (b — A)C)
x < y+ By(b— Ay)
Multiplicative version

X <<= X+ (Bl—l—Bz—BzABl)(b—AX)

Additive version

X <<= X1 (Bl+Bz)(b—AX)

Composition of Preconditioners

1n some sense

A linear operator that improves an approximate solution to a linear system.

x<=x+B(b—Ax) =x+BA(x" —x) =x+ Be

Constructing a preconditioner from two preconditioners.

"X <= x+ (By 4+ By — BoAB,) (b — Ax)

Additive version

X <<= X1 (Bl+B2)(b—AX)

Composition of Preconditioners

1N some sense

A linear operator that improves an approximate solution to a linear system.

x<=x+B(b—Ax) =x+BA(x" —x) =x+ Be

Constructing a preconditioner from two preconditioners.

y <=x+ B(b— Ax)

Additive version

X <<= X1 (Bl+Bz)(b—AX)

Composition of Preconditioners

1N some sense

A linear operator that improves an approximate solution to a linear system.

x<=x+B(b—Ax) =x+BA(x" —x) =x+ Be

Constructing a preconditioner from two preconditioners.

y<&=X+ B1 (b — A)C)
x < y+ By(b— Ay)
Multiplicative version

X <<= X+ (Bl—l—Bz—BzABl)(b—AX)

Additive version

x<:x+(B1+Bz)(b—Ax)

Preconditioners Defined by

(near) Galerkin Process
Define restriction and interpolation operators

Ri maps from a right hand side to a smaller,
weighted right hand side.
RiT interpolates from a subspace of the solution
space to the entire solution space.
Define preconditioners by
B;=RI'(RAR)™'R, B,=R!SR,
Special cases - Ri has a single 1 per row, Ri A RTis a submatrix of A

overlapping Schwarz methods - selects all unknowns 1n a local domains

field split methods - selects the 1th component at each grid point

multigrid - maps to a coarse grid

Preconditioners Defined by

(near) Galerkin Process
Define restriction and interpolation operators

Ri maps from a right hand side to a smaller,

weighted right hand side.

RiT interpolates from a subspace of the solution
space to the entire solution space.
Define preconditioners by
_ pl T\—1 __ pT
Special cases - Ri has a single 1 per row, Ri A RiTis a submatrix of A

overlapping Schwarz methods - selects all unknowns 1n a local domains

field split methods - selects the 1th component at each grid point

multigrid - maps to a coarse grid

Preconditioners Defined by

(near) Galerkin Process
Define restriction and interpolation operators

Ri maps from a right hand side to a smaller,
weighted right hand side.

Define preconditioners by
_ pT \—1 _ pl
Special cases - Ri has a single 1 per row, Ri A RiTis a submatrix of A

overlapping Schwarz methods - selects all unknowns 1n a local domains

field split methods - selects the ith component at each grid point

multigrid - maps to a coarse grid

Preconditioners Defined by

(near) Galerkin Process
Define restriction and interpolation operators

Ri maps from a right hand side to a smaller,
weighted right hand side.
RiT interpolates from a subspace of the solution
space to the entire solution space.

Define preconditioners by

B;=RI'(RAR)™'R, B,=R!SR,

Special cases - Ri has a single 1 per row, Ri A RiTis a submatrix of A

overlapping Schwarz methods - selects all unknowns in a local domains

field split methods - selects the ith component at each grid point

multigrid - maps to a coarse grid

Preconditioners Defined by

(near) Galerkin Process
Define restriction and interpolation operators

Ri maps from a right hand side to a smaller,
weighted right hand side.
RiT interpolates from a subspace of the solution
space to the entire solution space.
Define preconditioners by
B;=RI'(RAR)™'R, B,=R!SR,
Special cases - Ri has a single 1 per row, Ri A RTis a submatrix of A

overlapping Schwarz methods - selects all unknowns 1n a local domains

held splhit methods - selects the 1th component at each grid point

multigrid - maps to a coarse grid

Preconditioners Defined by

(near) Galerkin Process
Define restriction and interpolation operators

Ri maps from a right hand side to a smaller,
weighted right hand side.
RiT interpolates from a subspace of the solution
space to the entire solution space.
Define preconditioners by
B;=RI'(RAR)™'R, B,=R!SR,
Special cases - Ri has a single 1 per row, Ri A RTis a submatrix of A

overlapping Schwarz methods - selects all unknowns 1n a local domains

field split methods - selects the 1th component at each grid point

multigrid - maps to a coarse grid

Composition of Galerkin
Preconditioners

y<=RISIR(b—Ax) x<y+RiS:R:(b— Ay)

]Ek Sl

Multiplicative

Composition of Galerkin
Preconditioners

y<=RISIR(b—Ax) x<y+RiS:R:(b— Ay)

]Ek Sl

Multiplicative

x <= x+ (RISIR, + R SHR,) (b — Ax)

Sih \

Jacobi and Gauss-Seidel as
Galerkin Composites

B; =R (RAR!) 'R,

Jacobi and Gauss-Seidel as
Galerkin Composites

B; =R (RAR!) 'R,

R; =10,0,...,1,0,...0]

Jacobi and Gauss-Seidel as
Galerkin Composites

B; =R (RAR!) 'R,

R;=1[0,0,...,1,0,..0] R,ARI =A;

Jacobi and Gauss-Seidel as
Galerkin Composites

B; =R (RAR!) 'R,

R;=1[0,0,...,1,0,..0] R,ARI =A;

B, =10,0,...,1,0,...0]"A:'[0,0,...,1,0,...0]

Multigrid Fundamentals

& “Smoother” removes “high-frequency” error

& Stagnates on low-frequency error

Multigrid Fundamentals

& “Smoother” removes “high-frequency” error

& Stagnates on low-frequency error

X" <= x4+ B(b—Ax) = x+ Be

Multigrid Fundamentals

& “Smoother” removes “high-frequency” error

& Stagnates on low-frequency error

X" <= x4+ B(b—Ax) = x+ Be

R.e

Multigrid Fundamentals

& “Smoother” removes “high-frequency” error

& Stagnates on low-frequency error

X" <= x4+ B(b—Ax) = x+ Be

Al R.e

Multigrid Fundamentals

& “Smoother” removes “high-frequency” error

& Stagnates on low-frequency error

X" <= x4+ B(b—Ax) = x+ Be

RT A;' Ree

Multigrid Fundamentals

& “Smoother” removes “high-frequency” error

& Stagnates on low-frequency error

X" <= x4+ B(b—Ax) = x+ Be

RT A;' Ree

1 >CRC—|—1

Why Compose?

Multigrid

A specific set of techniques for composing Galerkin-like
preconditioners (simple solvers).

Uses recursion, as an optimization, for etficient
implementations.

Additive Multigrid
Y RIS;'R.

Additive Multigrid
Y RIS;'R.

-pc_mg_type additive

Additive Multigrid
Y RIS;'R.

-pc_mg_type additive
ZRTZRTAculR R,

mg_levels_pc_type jacobi

Additive Multigrid
Y RIS;'R.

C

-pc_mg_type additive

Y RIY RIAR R,
l

C

-mg_levels_pc_type jacobi
-mg_levels_pc_type sor

Additive Multigrid
Y RIS;'R.

C

-pc_mg_type additive

Y RIY RIAR R,
C l

-mg_levels_pc_type jacobi

-mg_levels_ks e preonl
-mg_levels_pc_type s =B OPEP 4

Multiphicative

Additive

4

Multiphicative

Additive

Multigrid

Multigrid

-pc_mg_type multiplicative
-pc_mg_smoothdown 0, 1, 2,..
-pc_mg_smoothup 0, 1, 2, ...

-pc_mg_cycles 1 or 2

-pc_mg_type multiplicative
-pc_mg_smoothdown 0, 1, 2,..
-pc_mg_smoothup 0, 1, 2, ...

-pc_mg_cycles 1 or 2

Actual source code: mg.c

/%
Defines the multigrid preconditioner interface.

*f

#include sre/ksp/pe/impls/mg/mgimpl.h

PetscErroxrCode PCMGMCycle Private(PC_MG **mglevels,PetscTruth *converged)
{

PC MG *mg = *mglevels, *mgc;
PetascInt cycles = mg->cycles;

ESPSolve {mg->smoothd, mg->b,mg->x) ;
if (mg=>level) { /* not the coarsest grid */
{*mg=->residual) (mg->A,mg=->b, mg->x,mg=->r) ;

mge = *{mglevels - 1);
MatRestrict (mg->restrct,mg->r,mgc=->b);
VecSet (mge->x,0.0);
while {cycles-=) {
PCMGMCycle Private({mglevels-1,converged);
}
MatInterpolatehdd(mg=>interpolate, mgec=>x,mg=->x,Mg=>Xx) ;
ESPSolve (mg->smoothu,mg->b, mg->x) ;

}

return{0}:

}

P

PCMGCreate Private - Creates a PC MG structure for use with the
multigrid code. Level 0 is the coarsest. (But the
finest level is stored first in the array).

L
static PetscErrorCode PCMGCreate Private(MPI_ Comm comm,PetscInt levels,PC pc,MPI Comm *comms,PC_MG ***result)

{
PC_MG =EMG ;
PetacInt i
PetacMPIInt gize;
conat char *prefix;
BEC ipc;

http://localhost/~bsmith/petsc-dev/src/ksp/pc/impls/mg/mg.c.html
http://localhost/~bsmith/petsc-dev/src/ksp/pc/impls/mg/mg.c.html

-pc_mg_type cascadic

-pc_mg_type cascadic

Multigrid Methods

Smoothing: Gauss-Seidel

Kew — S(XOld,b)

Multigrid Methods

Smoothing: Gauss-Seidel

Kew — S(XOld,b)

Coarse Grid Correction

J.c = R(b— Jx°')

Xnew __ xald —I—RTC

Multigrid Building Blocks

Smoothers
Order of Corrections
Krylov Accelerators

Alternative Interpolations

V-cycle Multigrid

V-cycle Multigrid

Full V-cycle Multigrid

Full V-cycle Multigrid

Krylov Acceleration

® Extrapolation techniques
® Examples: conjugate gradients, GMRES

® Trivially coded (physics independent)

Model Problem

Driven cavity (fluid dynamics)

—Au—V,Q=0

—Av+V, Q=0
—AQ+V,(uQ) + V,(vQ) — GRV,T =0
—AT +PR(V,(uT)+V,(vT)) =0

Smoother (inner)
Robustification

4 by 4 coarse grid, 6 levels, ~262,000 unknowns

Smoother (inner)

Robustification
4 by 4 coarse grid, 6 levels, ~262,000 unknowns

® |LU(O) preconditioner - 7,000+ iterations (5+min)

Smoother (inner)

Robustification
4 by 4 coarse grid, 6 levels, ~262,000 unknowns

® |LU(O) preconditioner - 7,000+ iterations (5+min)

® V-cycle

® SOR - diverged

Smoother (inner)

Robustification
4 by 4 coarse grid, 6 levels, ~262,000 unknowns

® |LU(O) preconditioner - 7,000+ iterations (5+min)

® V-cycle

® SOR - diverged
e |LU(O) - diverged

Smoother (inner)

Robustification
4 by 4 coarse grid, 6 levels, ~262,000 unknowns

® |LU(O) preconditioner - 7,000+ iterations (5+min)

® V-cycle

® SOR - diverged
e |LU(O) - diverged
e GMRES +

® SOR - diverged

Smoother (inner)

Robustification
4 by 4 coarse grid, 6 levels, ~262,000 unknowns

® |LU(O) preconditioner - 7,000+ iterations (5+min)

® V-cycle

® SOR - diverged
e |LU(O) - diverged
e GMRES +
® SOR - diverged
® |LU(O) - I8 iterations (|7 secs)

" lterations O Ute r B Time
27 Robustification ~ 3:68secs

V-cycle (diverged)

" lterations O Ute r B Time
27 Robustification ~ 3:68secs

V-cycle (diverged)

" lterations O Ute r B Time
27 Robustification ~ 3:68secs

W-cycle

Full W-cycle
V-cycle (diverged)

" lterations O Ute r B Time
27 Robustification ~ 3:68secs

W-cycle
Full W-cycle |
GMRES + Full W-cycle V-cycle (diverged)

B Iterations O Ute I B Time
Robustification ~ 3:68secs

W-cycle

Full W-cycle |
GMRES + Full W-cycle V-cycle (diverged)
GMRES + Full V-cycle

" lterations O Ute r B Time
27 Robustification ~ 3:68secs

W-cycle

Full W-cycle |
GMRES + Full W-cycle V-cycle (diverged)
GMRES + Full V-cycle

GMRES + V-cycle

O(n) Method

Smoothing is a purely local operation
1+1/2°+1/2°+....< 1

Work per iteration is O(n)

Elliptic solutions at any point depend on all
forcing and boundary conditions.

Global commmunication is achieved via
the coarser grids.

Number of iterations bounded independent
of number of levels.

Sample Convergence

Nonlinear
iteration Residual 2-norm

0 1.461936698223e-01 Linear Residual 2-norm

€0 | .461936698223¢-0

| 2.504698886662e-05 | | 730679507450e-02
2 8.869066880752e-12 5 3 028428095983¢-03
4.632334916516e-16 3 | 342233226408¢-04

4 5.257495967448e-06

5 1.734237037343e-07

Problem Dependent Robustification

e~ 1 p>> 1

Problem Dependent Robustification

e~ 1 p>> 1

Smoothed /f/\\\

Problem Dependent Robustification

e~ 1 p>> 1
min/(l —esin(pmx))(Vu)?

u

Smoothed /f/\\\

Problem Dependent Robustification

e~ 1 p>> 1
min/(l —esin(pmx))(Vu)?

u

Coarse grid basis function

N

Problem Dependent Robustification

e~ 1 p>> 1
min/(l —esin(pmx))(Vu)?

u

Coarse grid basis function

VN

DOE Parallel Multigrid Codes

® Algebraic

® || NL: hypre BoomerAMG -
® SNL:Trilinos ML -
® Prometheus -

® Geometric

® || NL: hypre
e ANL: PETSc

Accessing ML

Parallel multilevel (smooth aggregation)
preconditioner from SNL (Ray Tuminaro et. al.)

-pc_type ml
=Pl ..

Uses PETSc multigrid infrastructure - fills in the
slots of the PCMG (restriction/interpolation and
coarser grid operators).

=pC=T =,

Accessing boomerAMG

& Reasonably scalable algebraic multigrid solver

from LLNL (Rob Falgout et. al.)

-pc_type hype -pc_hypre_type boomeramg

-pc_hypre_boomeramg_....

Does not use PETSc multigrid infrastructure

Equation Reformulation

Ex 1. First-Order System Least Squares (FOSLS)

Ap+kip=0

Equation Reformulation

Ex 1. First-Order System Least Squares (FOSLS)

Ap+kip=0

u—Vp=>0 Vxu=~0
Vout+k’p=0

Equation Reformulation

Ex 1. First-Order System Least Squares (FOSLS)
Ap+kip=0
u—Vp=>0 VXxu=0
Vout+k’p=0

min/\u—Vp|2+ V. -u+kpl*+1|V xul?
U

Equation Reformulation

Ex 1. First-Order System Least Squares (FOSLS)
Ap+kip=0
u—Vp=>0 Vxu=0
V-u+k’p=0

min/\u—Vp|2+ V-u+kpl* +|V x ul
U

Ex 2. Physics-Based Preconditioning

® Geometric multigrid - coarser grids/
interpolation come from geometry.

B Grids need not be nested: coarsening

® Algebraic multigrid - “interpolation” comes
from fine grid information (e.g. matrix
entries)

Algorithmic multigrid - Preprocess the
equations into a formulation more

amendable to multigrid (e.g. hyperbolic to
parabolic)

Algorithmic-Geometric-Algebraic

Multigrid Robustification

® Enhanced smoothers
® point block smoothers
® overlapping blocks
® Krylov acceleration
® Krylov acceleration
® Full multigrid, W-cycle
® Operator (problem) dependent interpolation

® Equation reformulation

| (someone) tr ultigrid on this
problem and it 't work (well).

| (someone) tr ultigrid on this
problem and it 't work (well).

Multigrid is not an algorithm, it is a
philosophy (family of algorithms).

