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Multigrid is not an algorithm, it is a 
philosophy (family of algorithms).
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Multigrid Basics

−∇ · κ(x)∇u = f (x)
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Multigrid Basics

−∇ · κ(x)∇u = f (x)

Corrected



Single-step Solvers
xnew ⇐ x+B(b−Ax) = x+BA(x∗ − x) = x+Be

Gauss-Seidel (smoothing)

= x+(L+D)−1(b− (L+D+U)x) = (L+D)−1(b−Ux)

Incomplete LU factorization

= x+Û−1L̂−1(b−Ax)

Full LU factorization



Multi-step Solvers
Given 

compute xn+1 = αxn−1 +βxn + γx̂n+1

inexpensively that is better in some measure.

•Conjugate gradient method
•Generalized minimum residual
•Quasi-minimal residual
•......

Black-box on A, B and x

xn−1,xn, x̂n+1 = xn +B(b−Axn)



Composition of Preconditioners

x⇐ x+B(b−Ax) = x+BA(x∗− x) = x+Be
Constructing a preconditioner from two preconditioners.

Multiplicative version

Additive version

A linear operator that improves an approximate solution to a linear system.

y⇐ x+B1(b−Ax)
x⇐ y+B2(b−Ay)

x⇐ x+(B1+B2−B2AB1)(b−Ax)

x⇐ x+(B1+B2)(b−Ax)

in some sense
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Preconditioners Defined by 
(near) Galerkin Process

Define restriction and interpolation operators
Ri maps from a right hand side to  a smaller, 
weighted right  hand side. 
RiT interpolates from a subspace of the solution 
space to the entire solution space.

Define preconditioners by
Bi = RTi (RiAR

T
i )
−1Ri Bi = RTi SiRi

Special cases - Ri has a single 1 per row, Ri A RiT is a submatrix of A 

 overlapping Schwarz methods - selects all unknowns in a local domains
  field split methods - selects the ith component at each grid point

multigrid - maps to a coarse grid
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Composition of Galerkin 
Preconditioners

 R1  S1  R1T

 R2
 R2T
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+
x⇐ y+RT2S2R2(b−Ay)y⇐ RT1S1R1(b−Ax)
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Composition of Galerkin 
Preconditioners

 R1  S1  R1T

 R2
 R2T

 S2

 R2
 R2T

 S2

+
x⇐ y+RT2S2R2(b−Ay)y⇐ RT1S1R1(b−Ax)

 Multiplicative

 R1

 S1

 R1T

 R2  R2T

 S2
+

Additive

x⇐ x+(RT1S1R1+RT2S2R2)(b−Ax)



Jacobi and Gauss-Seidel as 
Galerkin Composites
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Jacobi and Gauss-Seidel as 
Galerkin Composites

Bi = RT
i (RiART

i )−1Ri

Ri = [0,0, ...,1,0, ...0] RiART
i = Aii

Bi = [0,0, ...,1,0, ...0]T A−1
ii [0,0, ...,1,0, ...0]
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Multigrid Fundamentals

 “Smoother” removes “high-frequency” error

 Stagnates on low-frequency error

xnew ⇐ x+B(b−Ax) = x+Be

A−1
c RceRT

c

Rc = Rc+1→cRc+1



Why Compose?



Multigrid

A specific set of techniques for composing Galerkin-like 
preconditioners (simple solvers). 

Uses recursion, as an optimization, for efficient 
implementations. 



Additive Multigrid
∑
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Additive Multigrid
∑
c

RT
c S−1

c Rc

∑
c

RT
c ∑

i
RT

ci
A−1

cii
RciRc

-pc_mg_type additive

-mg_levels_pc_type jacobi

-mg_levels_pc_type sor
-mg_levels_ksp_type preonly



Multiplicative
Additive

 R1

 S1

 R1T

 S3 +

 R1

 S1

 R1T
 R2  R2T

 S3 +



Multiplicative
Additive

 R1

 S1

 R1T

 S3 +

 R1

 S1

 R1T
 R2  R2T

 S3 +

 S3

 R2
 R2T

 R1T
 R1

 S1
 S2



Multigrid

 S1

+

r

r +

+ S2

 R2

 S1

 S0

 R1  R1T

 R2T

 S1

 S2



Multigrid

 S1

+

r

r +

+ S2

 R2

 S1

 S0

 R1  R1T

 R2T

 S1

 S2

 S3

 R2
 R2T

 R1T
 R1

 S1
 S2



-pc_mg_type multiplicative
-pc_mg_smoothdown 0, 1, 2,..
-pc_mg_smoothup 0, 1, 2, ...
-pc_mg_cycles 1 or 2
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http://localhost/~bsmith/petsc-dev/src/ksp/pc/impls/mg/mg.c.html
http://localhost/~bsmith/petsc-dev/src/ksp/pc/impls/mg/mg.c.html
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-pc_mg_type cascadic
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 R2T S1
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 R1T

b

 S0

 R2T S1

 S2

 R1T

b

 R1

+

-pc_mg_type full



Multigrid Methods

 S1

+

Smoothing: Gauss-Seidel

xnew = S(xold ,b)



Multigrid Methods

 S1

+

Smoothing: Gauss-Seidel

Coarse Grid Correction

xnew = S(xold ,b)

xnew = xold +RT c

Jcc = R(b− Jxold)



Multigrid Building Blocks

• Smoothers

• Order of Corrections

• Krylov Accelerators

• Alternative Interpolations



V-cycle Multigrid
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W-cycle Multigrid



Full V-cycle Multigrid
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Full V-cycle Multigrid

 S1

+

 S0

 R2T S1

 S2

 R1T

b

 R1

+

Krylov Acceleration

• Extrapolation techniques

• Examples: conjugate gradients, GMRES

• Trivially coded (physics independent)



Model Problem

Driven cavity (fluid dynamics)

−"u−∇yΩ= 0
−"v+∇xΩ= 0

−"Ω+∇x(uΩ)+∇y(vΩ)−GR∇xT = 0
−"T +PR(∇x(uT )+∇y(vT )) = 0
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Smoother (inner)
Robustification

• ILU(0) preconditioner - 7,000+ iterations (5+min)

• V-cycle 

• SOR - diverged

• ILU(0) - diverged

• GMRES + 

• SOR - diverged

• ILU(0) - 18 iterations (17 secs)

4  by 4 coarse grid, 6 levels, ~262,000 unknowns
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Iterations Time

0

27 3.68 secs

0

V-cycle   (diverged)

W-cycle  
Full W-cycle  
GMRES + Full W-cycle  
GMRES + Full V-cycle  
GMRES + V-cycle  

Outer
 Robustification



O(n) Method
• Smoothing is a purely local operation

•  

• Work per iteration is O(n)

• Elliptic solutions at any point depend on all 
forcing and boundary conditions.

• Global communication is achieved via 
the coarser grids.

• Number of iterations bounded independent 
of number of levels.

1+1/23 +1/26 + .... < 1



Sample Convergence

  0   1.461936698223e-01

  1    2.504698886662e-05 
  2    8.869066880752e-12 
  3    4.632334916516e-16 

  0   1.461936698223e-01 
  1   1.730679507450e-02 
  2   3.028428095983e-03 
  3   1.342233226408e-04 
  4   5.257495967448e-06 
  5   1.734237037343e-07 

Nonlinear 
iteration Residual 2-norm

Linear Residual 2-norm
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−∇ · (1− εsin(pπx))∇u = f (x)
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Z
(1− εsin(pπx))(∇u)2



Problem Dependent Robustification

ε≈ 1 p >> 1
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DOE Parallel Multigrid Codes

• Algebraic

• LLNL: hypre BoomerAMG -

• SNL: Trilinos ML -

• Prometheus -

• Geometric

• LLNL: hypre

• ANL: PETSc



Accessing ML
 Parallel multilevel (smooth aggregation) 

preconditioner from SNL (Ray Tuminaro et. al.) 

 -pc_type ml

 -pc_ml_....

 Uses PETSc multigrid infrastructure - fills in the 
slots of the PCMG (restriction/interpolation and 
coarser grid operators).

 -pc_mg_...



Accessing boomerAMG

 Reasonably scalable algebraic multigrid solver 
from LLNL (Rob Falgout et. al.)

 -pc_type hype -pc_hypre_type boomeramg

 -pc_hypre_boomeramg_....

 Does not use PETSc multigrid infrastructure
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Equation Reformulation
Ex 1. First-Order System Least Squares (FOSLS)

!p+ k2 p = 0

u−∇p = 0
∇ · u+ k2 p = 0

∇×u = 0

min
u

Z
|u−∇p|2 + |∇ · u+ k2 p|2 + |∇×u|2

Ex 2. Physics-Based Preconditioning



• Geometric multigrid - coarser grids/
interpolation come from geometry.

➡Grids need not be nested: coarsening

• Algebraic multigrid - “interpolation” comes 
from fine grid information (e.g. matrix 
entries)

• Algorithmic multigrid - Preprocess the 
equations into a formulation more 
amendable to multigrid (e.g. hyperbolic to 
parabolic)

Algorithmic-Geometric-Algebraic



Multigrid Robustification
• Enhanced smoothers 

• point block smoothers

• overlapping blocks

• Krylov acceleration

• Krylov acceleration

• Full multigrid, W-cycle

• Operator (problem) dependent interpolation

• Equation reformulation
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