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Outline

Stochastic dynamical systems that exhibit time-scale
separation

Coarse projective schemes (Equation Free and
Averaging principle)

Particle Filters
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Stochastic dynamical systems

Deterministic dynamical system

dx = a(x)dt

x(t + ∆t) − x(t) = a(x(t))∆t

Stochastic dynamical system

Stochastic differential equation

dx = a(x)dt + θ(x)dW

x(t + ∆t) − x(t) = a(x(t))∆t + θ(x(t))N (0, ∆t)

Jump process

dx = a(x)dP (λ)

x(t + τ) − x(t) = a(x(t)), τ ∝ Exp(1/λ)
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Scale separation







dx = a(x, y)dt

dy = 1
ǫ
b(x, y)dt + 1√

ǫ
σ(x, y)dW

where ǫ ≪ 1.
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Scale separation







dx = a(x, y)dt

dy = 1
ǫ
b(x, y)dt + 1√

ǫ
σ(x, y)dW

where ǫ ≪ 1.

We sample the dynamical system during a small time interval, small
enough to ensure that the slow variable has not changed significantly.

Time scales:

i time scale of the detailed model/of the fast dynamics

ii the time needed for the y dynamics to fill up a distribution

iii the time scale for the slow variable
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Averaging Principle

If for fixed x

dy =
1

ǫ
b(x, y)dt +

1√
ǫ
σ(x, y)dW

generates an invariant measure µx(dy) then x(t) ≈ X(t) where

dX(t) = ā(X(t))dt

ā(x) =

∫

a(x, y)µx(dy)

or

(x(t), y(t)) ∼ (X(t), µX(t)(dy))
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Averaging Principle

If for fixed x

dy =
1

ǫ
b(x, y)dt +

1√
ǫ
σ(x, y)dW

generates an invariant measure µx(dy) then x(t) ≈ X(t) where

dX(t) = ā(X(t))dt

ā(x) =

∫

a(x, y)µx(dy)

or

(x(t), y(t)) ∼ (X(t), µX(t)(dy))

In order to approximate the slow variable we need to know a(x, y), the
Right Hand Side

It may happen that the detailed model is given as a “black box”
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Equation Free

Black Box:

RHS which consists of complicated functions

Random walks, Stochastic processes

Legacy code, Proprietary software, Closed source software

Input - (initial value at time t0, integration time ti)

Output - value/sample at time t0 + ti
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Equation Free

Black Box:

RHS which consists of complicated functions

Random walks, Stochastic processes

Legacy code, Proprietary software, Closed source software

Input - (initial value at time t0, integration time ti)

Output - value/sample at time t0 + ti

How do we integrate/simulate such a black box?

dX(t) = ā(X(t))dt

X(t + ∆t) − X(t) = ā(X(t))∆t

without the knowledge of the function ā(x).
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Equation Free

ā(X(t)) = lim
h→0

X(t + h) − X(t)

h

Coarse-grained projective schemes for particle filters – p. 11/36



Equation Free

ā(X(t)) = lim
h→0

X(t + h) − X(t)

h

which suggests

X(t + ∆t) − X(t) ≈ X(t + h) − X(t)

h
∆t
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Equation Free

ā(X(t)) = lim
h→0

X(t + h) − X(t)

h

which suggests

X(t + ∆t) − X(t) ≈ X(t + h) − X(t)

h
∆t

Short bursts enable a projective step/big jump in time
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Equation Free for Multiscale dynamics

Recall that (x(t), y(t)) ∼ (X(t), µX(t)(dy)).

In this case our black box simulates x(t) and not X(t) hence

x(t + ∆t) − x(t) 6=
x(t + h) − x(t)

h
∆t

ā(x(t))∆t a(x(t), y(t))∆t
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Equation Free for Multiscale dynamics

Recall that (x(t), y(t)) ∼ (X(t), µX(t)(dy)).

In this case our black box simulates x(t) and not X(t) hence

x(t + ∆t) − x(t) 6=
x(t + h) − x(t)

h
∆t

ā(x(t))∆t a(x(t), y(t))∆t

Solution:

1. Given Xn∆t, choose Yn∆t (almost surely any choice is good)

2. Evolve the detailed model starting at (Xn∆t, Yn∆t) for time length δt, to obtain
(Xn∆t+δt, Yn∆t+δt)

3. Evolve the system for time length ηt, to obtain

�
Xn∆t+δt+ηt, Yn∆t+δt+ηt

�

4. Estimate ā

�

xǫ
n∆t

�
by evaluating

Xn∆t+δt+ηt − Xn∆t+δt

ηt
=: A(Xn∆t) ≈ ā(xǫ

n∆t)

5. Projective step:

X(n+1)∆t = Xn∆t + A(Xn∆t)∆t
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Coarse variable effectively stochastic

What if X(t + ∆t) − X(t) = ā(X(t))∆t + θ̄(X(t))∆W

In that case different realizations will give different values for X(t + ∆t).

So how do we estimate ā, θ̄?

Solution:

1.

ā(X(t)) = lim
h→0

E [X(t + h) − X(t)]

h
≈

1
N

PN
i=0

�
Xi(t + h) − X(t)

�

h

2.

θ̄θ̄⊤(X(t)) = lim
h→0

E [X(t + h) − X(t)]2

h
≈

1
N

PN
i=0

�
Xi(t + h) − X(t)

�2
h

Multiscale case:

3.

ā(X(t)) ≈
E [x(t + ηt) − X(t)]

ηt
≈

1
N

PN
i=0

�

xi(t + ηt) − X(t)

�

ηt

4.

θ̄θ̄⊤(X(t)) ≈
E [x(t + ηt) − X(t)]2

ηt
≈

1
N

PN
i=0

�

xi(t + ηt) − X(t)

�2
ηt
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Coarse variable effectively stochastic

!!! In order to make a ∆t time step we use (instead) N short bursts of length ηt.
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Coarse variable effectively stochastic

!!! In order to make a ∆t time step we use (instead) N short bursts of length ηt.

Since all realizations/short bursts are independent we can run all N simulations in parallel
(embarrassingly parallel)

We dramatically reduce the wall-clock time while not increasing the overall processor
usage

We can generate the entire distribution rather than just obtaining one long (∆t)

realization

Similar ideas are applied on pure jump processes, chemical reactions, where we can use
short bursts to estimate jumps intensity and jumps amplitude.
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Simple example - Chemical reaction

We demonstrate the scheme on the multiscale jump process given by0BB� dS1

dS2

dS3

1CCA =

0BB� 1 0 0

0 1 −1

0 −1 1

1CCA0BB� dP1(S2)

dN1(S3)

dN2(S2)
1CCA , (1)

with initial value (0, 600, 1200) and with intensity functions0BB� a1 (S1, S2, S3)

a2 (S1, S2, S3)

a3 (S1, S2, S3)

1CCA =
0BB� 5 · 10−5S2

S3

2S2

1CCA .
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Simple example - Chemical reaction
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Simple example - Chemical reaction

0 0.5 1 1.5 2 2.5

x 10
4

0

200

400

600

800

1000

1200

1400

Time

N
um

be
r 

of
 m

ol
ec

ul
es

 

 

S1 − detailed model
S2 − detailed model
S3 − detailed model
S1 − projective scheme
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Filtering Problem

Tracking the state of a system as it evolves over time -
Hidden Process

We have: Sequentially arriving (noisy or ambiguous)
observations

We want to know: Best possible estimate of the hidden
variables

Example:

 Tracking of aircraft positions from radar

£ Predicting economical data
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Filtering Problem

Vt is a Markov process with transition probability
Qt(v, dv′) where Q0(dv) is a known distribution - Hidden
Process
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Filtering Problem

Vt is a Markov process with transition probability
Qt(v, dv′) where Q0(dv) is a known distribution - Hidden
Process

S1, . . . , SN are noisy discrete observations at N

regularly spaced times ti. The likelihood of Si+1

conditional on (Vi+1) is known and given by
s 7→ g(Vi+1, s)
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Filtering Problem

Vt is a Markov process with transition probability
Qt(v, dv′) where Q0(dv) is a known distribution - Hidden
Process

S1, . . . , SN are noisy discrete observations at N

regularly spaced times ti. The likelihood of Si+1

conditional on (Vi+1) is known and given by
s 7→ g(Vi+1, s)

The filtering problem consists of computing the
conditional expectations

Πif = E [f(Vti)|S1, . . . , Si]

for some function f .
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Example - Filtering Problem

Qt(v, dv′) Predict next state from current estimate

g(Vi+1, Si+1) Update the prediction using sequentially arriving new
measurements

The filtering problem consists of computing the conditional
expectations

Πif = E [f(Vti
)|S1, . . . , Si]

For example:

dVt = a(Vt) dt + b(Vt) dWt

St = h(Vt) + χ

where χ is a random variable, noise term.
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Particle Filter

1. Sample n i.i.d. vectors (particles) v
j
0, j = 1, . . . , n from Q0(dv). Set k = 1.

2. For j = 1, . . . , n evolve v
j
k−1 according to Q(vj

k−1, dv′) to get v
j
k

.

3. Calculate

Wn
k f =

1

n
Σn

j=1f(vj
k
) g(vj

k
, sk),

4. Define the probability measure Ψn
k on R

d as

Ψn
k =

1

n Wn
k

1
Σn

j=1g(vj
k
, sk)δ(vj

k
).

5. If k < N : Set k → k + 1. Sample n i.i.d. variables x
j
k
, j = 1, . . . , n from Ψn

k , and go to
Step 2.

We stop at the end of step N , and our approximation of ΠN f is,

Ψn
N f =

Wn
N f

Wn
N 1
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Particle Filter

1. Sample n i.i.d. vectors (particles) v
j
0, j = 1, . . . , n from Q0(dv). Set k = 1.

2. For j = 1, . . . , n evolve v
j
k−1 according to Q(vj

k−1, dv′) to get v
j
k

.

3. Calculate

Wn
k f =

1

n
Σn

j=1f(vj
k
) g(vj

k
, sk),

4. Define the probability measure Ψn
k on R

d as

Ψn
k =

1

n Wn
k

1
Σn

j=1g(vj
k
, sk)δ(vj

k
).

5. If k < N : Set k → k + 1. Sample n i.i.d. variables x
j
k
, j = 1, . . . , n from Ψn

k , and go to
Step 2.

We stop at the end of step N , and our approximation of ΠN f is,

Ψn
N f =

Wn
N f

Wn
N 1
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Particle Filter

1. Sample n i.i.d. vectors (particles) v
j
0, j = 1, . . . , n from Q0(dv). Set k = 1.

2. For j = 1, . . . , n evolve v
j
k−1 according to Q(vj

k−1, dv′) to get v
j
k

.

3. Calculate

Wn
k f =

1

n
Σn

j=1f(vj
k
) g(vj

k
, sk),

4. Define the probability measure Ψn
k on R

d as

Ψn
k =

1

n Wn
k

1
Σn

j=1g(vj
k
, sk)δ(vj

k
).

5. If k < N : Set k → k + 1. Sample n i.i.d. variables x
j
k
, j = 1, . . . , n from Ψn

k , and go to
Step 2.

We stop at the end of step N , and our approximation of ΠN f is,

Ψn
N f =

Wn
N f

Wn
N 1

= EΨn

N
f
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Reminder of Goal

Present a particle filter construction for a system that
exhibits time-scale separation

√
Particle filter construction

! time-scale separation
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Combining the projective scheme for mulitscale filtering problem

Underline model - Hidden variable,

dxt = a(xt, yt) dt

dyt =
1

ǫ
b(xt, yt) dt +

1√
ǫ
σ(xt, yt) dWt

Observations - Likelihood,

St = h(xt, yt, χt) with density/likelihood g(x, y, s)
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Combining the projective scheme for mulitscale filtering problem

We cannot naively apply the coarse projective scheme
since it evolves only the slow/coarse variable while the
observations are a function of the entire phase space.
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Combining the projective scheme for mulitscale filtering problem

We cannot naively apply the coarse projective scheme
since it evolves only the slow/coarse variable while the
observations are a function of the entire phase space.

Instead we use the approximation for the original/higher
dimensional space

(x(t), y(t)) ∼ (X(t), µX(t)(dy))

Once an observation arrives, we “lift” the X variable
to many copies of (X,Y ) by simulating for a very
short time and recording the entire ensemble of M

outputs.

{X(t), y(t + kδt)} k = 1, . . . ,M
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Projective Particle filter

1. Sample n i.i.d. vectors X
j
0 j = 1, . . . , n from Q0(dx, dy). Set k = 1.

2. For each j = 1, . . . , n evolve X
j
k−1 until the next observation time using the projective

scheme to generate samples X
j
k

3. When an observation arrives lift X
j
k

to

n�

X
j
k
, Y

j
k,m

�o
:

(a) Evolve the detailed model/full simulator M times with time step δt to generaten�

X
j
k
, Y

j
k,m

�o

, m = 1, . . . , M

4. For each j = 1, . . . , n :

(a) Calculate W

h

f(Xj
k
)

i

= 1
M

PM
m=1 f(Xj

k
, Y

j
k,m

) g(Xj
k
, Y

j
k,m

, sk)

(b) Calculate Wn
k f = 1

n

Pn
j=1 W

h
f(Xj

k
)
i

5. Define the probability measure Ψn
k on R

dx as

Ψn
k =

1

n Wn
k

1
Σn

j=1W

h
1(Xj

k
)

i

δ(Xj
k
)

6. If k < N : Set k → k + 1. Sample n i.i.d. variables X
j
k

, j = 1, . . . , n from Ψn
k , and go to

Step 2.
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Summary

Stochastic dynamical systems with scale separation

Coarse projective scheme that enable to integrate the
slow/coarse variable under the assumption of a black
box (Equation Free)

Wall-clock time reduction when using parallel
architecture

The use of projective schemes for particle filters
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The end

Thank you

http://www.princeton.edu/ dgivon/
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