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Many Programming Models 



Portability across Languages 

function D = pointer_jumping (D) 
  n = length(D); 
  Dold = zeros(n,1); 

  for i=1:1000 
    Dold = D; 
    D = D(D); 
  end 
end 

 def pointer_jumping (self, D): 
        n = D.size 
        Dold = zeros(n); 

        for i in arange(0,1000): 
            Dold = D 
            D = D[D] 

        return D 

•  Run both codes on a randomly permuted input vector with 1 million elements. 
•  M code takes 57 seconds. Python takes 27 seconds. 
•  Notice how similar the languages look, modulo operators and function names. 
•  But, many subtle differences: 

•  M is copy-by-value. Py is copy-by-reference.  
•  Indexing and assignment look the same, but behave differently. 



Knowledge Discovery Toolbox 

•  Simple data analysis operations at very large scale 
–  Sorting, Set operations, Statistical operations 

•  Graph operations on very large graphs  
–  Simple queries, Breadth-first search, Connected components, 

Independent sets 

•  Visualization with desktop tools 
–  Distributed image generation for large graphs and datasets 

•  Clustering and decomposition 
–  NNMF, PCA 

•  Bayesian Network modeling 
–  Expectation Maximization algorithms, Hidden Markov Models 

•  What would you like to see ? 



Simplest KDT operation: 
Parallel Sorting 

•  Simple, widely used combinatorial primitive 

•  [V, perm] = sort (V) 

•  Used in many sparse matrix and array algorithms: sparse(), indexing, 
concatenation, transpose, reshape, repmat etc. 

•  Communication efficient 
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Sorting performance 

Time spent in different phases of Psort 

(192 processors on SGI Altix)
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Analysis of Big Graphs with KDT 

Goal: Enable analyst to explore big graphs interactively 
–  Explore:  human-guided characterization, from simple statistics 

to complex clustering or factoring, even when best algorithm not 
known 

–  Big:  1B+ edges commonplace 
–  Graphs:   

•  E.g., arising from metabolic networks, climate change, and social 
interactions 

•  Allow analyst to think directly in terms of graphs 
•  KDT implements many key algorithms;  extensible for other 

algorithms  
–  Interactively:  Simple queries take O(10 seconds) on 30-128P 

Altix 



Distributed visualization 



A complex workflow (SSCA#2, kernel 3) 

function subgraphs = kernel3 (G, pathlen, starts) 
% KERNEL3 : SSCA#2 Kernel 3 -- Graph Extraction 

starts = starts(:,2); 
nstarts = length(starts); 
A = grsparse (G); 
nv = nverts (G); 

% Use sparse matrix multiplication to do several BFS searches at once. 
s = sparse (starts, 1:nstarts, 1, nv, nstarts); 
for k=1:pathlen 
    s = A * s;     % Ideally reach should support this. Not yet. 
    s = (s ~= 0); 
end 

for i = 1:nstarts 
    x = s(:,i); 
    vtxmap = find(x); 
    S.graph = subgraph (G, vtxmap); 
    S.vtxmap = vtxmap; 
    subgraphs{i} = S; 
end 



A complex workflow (SSCA#2, kernel 4) 

function leader = kernel4f (G) 
% KERNEL4F : SSCA#2 Kernel 4 -- Graph Clustering 

% Find a Maximal Independent Set in G 
[IS, misrounds] = mis (G);  
fprintf ('MIS rounds: %d. MIS nodes: %d\n', misrounds, length(IS)); 

% Find neighbours of each node from the IS 
neighFromIS = G * sparse(IS, IS, 1, n, n);  

% Pick one of the neighbouring IS nodes as a leader 
[ign leader] = max (neighFromIS, [], 2); 

% Collect votes from neighbours 
[I J] = find (G); 
S = sparse (I, leader(J), 1, n, n); 

% Pick the most popular leader among neighbours and join that cluster 
[ign leader] = max (S, [], 2); 



Scaling Performance: cSSCA#2 on 128P 

"scale“ 
#vertices 

(== 2^scale) 
#edges 

(~= 10 * vertices) 
graph size 

(bytes) 
time 

(seconds) 

22 4.194E+06 4.194E+07 7.550E+08 122.51 

24 1.678E+07 1.678E+08 3.020E+09 402.31 

26 6.711E+07 6.711E+08 1.208E+10 1237.1 

•  Timings scale well – for large graphs, 
–  2x problem size  2x time 
–  2x problem size & 2x processors  same time 



App#1:  Computational Ecology 

•  Modeling dispersal of 
species within a habitat (to 
maximize range) 

•  Large geographic areas, 
linked with GIS data 

•  Blend of numerical and 
combinatorial algorithms 

Brad McRae and Paul Beier, “Circuit theory predicts gene flow in plant and animal populations”,  
PNAS, Vol. 104, no. 50, December 11, 2007 



Circuitscape (3 days to 3 mins) 



App#2 Factoring network flow behavior   
[Karpinski, Almeroth, Belding] 



Algorithmic exploration 

•  Many NMF variants exist in the literature 
–  Not clear how useful on large data 
–  Not clear how to calibrate (i.e., number of iterations to converge) 

•   NMF algorithms combine linear algebra and optimization methods 

•  Basic and “improved” NMF factorization algorithms implemented: 
–  euclidean (Lee & Seung 2000) 
–  K-L divergence (Lee & Seung 2000) 
–  semi-nonnegative (Ding et al. 2006) 
–  left/right-orthogonal (Ding et al. 2006) 
–  bi-orthogonal tri-factorization (Ding et al. 2006) 
–  sparse euclidean (Hoyer et al. 2002) 
–  sparse divergence (Liu et al. 2003) 
–  non-smooth (Pascual-Montano et al. 2006) 



NMF traffic analysis results 



Future Application Areas 

Keitt: Linking complexity sciences to computational infrastructure for 
          petascale network analysis  



The Impossible Trinity 

Languages 
C++, F, MPI 

Hardware 
CPU, GPU, 
Cell, XMT  

Applications 
GIS 

Social Networks 

CUDA 

M, Py 
*P 

VACE 

How will domain 
scientists program ? … 

… Or will computer 
scientists program for 

everyone ? 



Special purpose hardware 

Key Performance Metrics 



Future Directions 

•  What should KDT contain: 
–  More algorithms ? 
–  Visualization ? 
–  Easy use of hardware accelerators (GPU, Cell) ?   



Extra Slides 
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Star-P Functional Overview 



Using Star-P – “Data parallel” 

•  Large data problems 
•  Use *p construct 

–  Global parallelism 
–  Variables become 

parallel 
–  Propagation occurs 

•  Results are parallel 
•  Functions performed 

on parallel data 



Using Star-P – “Task parallel” 
•  Embarrassingly parallel apps 
•  Monte-Carlo simulations 
•  Use Star-P’s ppeval 

T = 1;     %Maturity of an option in years 
sigma = linspace(.01,.8,256);  %Volatility range from 0.01 to 0.8 
Num_Sum = 12;    %Number of contract dates in option duration 
Num_Traj = 1000000;   %Number of trajectories to solve 

%Serial Version 
for i=1:length(sigma) 

 [price(i), vega(i)] = dao(T, Num_Sum, Num_Traj, sigma(i)); 
end 

%Parallel Version with Star-P 
[price vega] = ppeval(‘dao’,T, Num_Sum,Num_Traj, sigma); 

%Asian Option Pricing Using Monte Carlo analysis 


