
Star-P and Knowledge Discovery

Viral B. Shah, vshah@InteractiveSupercomputing.com

Steve Reinhardt, John R. Gilbert, Stefan Karpinski, Brad McRae

Star-P

MATLAB® is a registered trademark of The MathWorks, Inc. ISC's products are not sponsored or endorsed
by The Mathworks, Inc. or by any other trademark owner referred to in this document.

®

Many Programming Models

Portability across Languages

function D = pointer_jumping (D)
 n = length(D);
 Dold = zeros(n,1);

 for i=1:1000
 Dold = D;
 D = D(D);
 end
end

 def pointer_jumping (self, D):
 n = D.size
 Dold = zeros(n);

 for i in arange(0,1000):
 Dold = D
 D = D[D]

 return D

•  Run both codes on a randomly permuted input vector with 1 million elements.
•  M code takes 57 seconds. Python takes 27 seconds.
•  Notice how similar the languages look, modulo operators and function names.
•  But, many subtle differences:

•  M is copy-by-value. Py is copy-by-reference.
•  Indexing and assignment look the same, but behave differently.

Knowledge Discovery Toolbox

•  Simple data analysis operations at very large scale
–  Sorting, Set operations, Statistical operations

•  Graph operations on very large graphs
–  Simple queries, Breadth-first search, Connected components,

Independent sets

•  Visualization with desktop tools
–  Distributed image generation for large graphs and datasets

•  Clustering and decomposition
–  NNMF, PCA

•  Bayesian Network modeling
–  Expectation Maximization algorithms, Hidden Markov Models

•  What would you like to see ?

Simplest KDT operation:
Parallel Sorting

•  Simple, widely used combinatorial primitive

•  [V, perm] = sort (V)

•  Used in many sparse matrix and array algorithms: sparse(), indexing,
concatenation, transpose, reshape, repmat etc.

•  Communication efficient

3 6 8 1 5 4 7 2 9

1 2 3 4 5 6 7 8 9

Sorting performance

Time spent in different phases of Psort

(192 processors on SGI Altix)

0.0001

0.001

0.01

0.1

1

10

100

1000

1E+06 1E+07 1E+08 1E+09 1E+10 1E+11

Problem Size

T
im

e
 (

s
e
c
o
n
d
s
)

Sequential sorting Splitters using medians

Communication Merging

Total time

Analysis of Big Graphs with KDT

Goal: Enable analyst to explore big graphs interactively
–  Explore: human-guided characterization, from simple statistics

to complex clustering or factoring, even when best algorithm not
known

–  Big: 1B+ edges commonplace
–  Graphs:

•  E.g., arising from metabolic networks, climate change, and social
interactions

•  Allow analyst to think directly in terms of graphs
•  KDT implements many key algorithms; extensible for other

algorithms
–  Interactively: Simple queries take O(10 seconds) on 30-128P

Altix

Distributed visualization

A complex workflow (SSCA#2, kernel 3)

function subgraphs = kernel3 (G, pathlen, starts)
% KERNEL3 : SSCA#2 Kernel 3 -- Graph Extraction

starts = starts(:,2);
nstarts = length(starts);
A = grsparse (G);
nv = nverts (G);

% Use sparse matrix multiplication to do several BFS searches at once.
s = sparse (starts, 1:nstarts, 1, nv, nstarts);
for k=1:pathlen
 s = A * s; % Ideally reach should support this. Not yet.
 s = (s ~= 0);
end

for i = 1:nstarts
 x = s(:,i);
 vtxmap = find(x);
 S.graph = subgraph (G, vtxmap);
 S.vtxmap = vtxmap;
 subgraphs{i} = S;
end

A complex workflow (SSCA#2, kernel 4)

function leader = kernel4f (G)
% KERNEL4F : SSCA#2 Kernel 4 -- Graph Clustering

% Find a Maximal Independent Set in G
[IS, misrounds] = mis (G);
fprintf ('MIS rounds: %d. MIS nodes: %d\n', misrounds, length(IS));

% Find neighbours of each node from the IS
neighFromIS = G * sparse(IS, IS, 1, n, n);

% Pick one of the neighbouring IS nodes as a leader
[ign leader] = max (neighFromIS, [], 2);

% Collect votes from neighbours
[I J] = find (G);
S = sparse (I, leader(J), 1, n, n);

% Pick the most popular leader among neighbours and join that cluster
[ign leader] = max (S, [], 2);

Scaling Performance: cSSCA#2 on 128P

"scale“
#vertices

(== 2^scale)
#edges

(~= 10 * vertices)
graph size

(bytes)
time

(seconds)

22 4.194E+06 4.194E+07 7.550E+08 122.51

24 1.678E+07 1.678E+08 3.020E+09 402.31

26 6.711E+07 6.711E+08 1.208E+10 1237.1

•  Timings scale well – for large graphs,
–  2x problem size 2x time
–  2x problem size & 2x processors same time

App#1: Computational Ecology

•  Modeling dispersal of
species within a habitat (to
maximize range)

•  Large geographic areas,
linked with GIS data

•  Blend of numerical and
combinatorial algorithms

Brad McRae and Paul Beier, “Circuit theory predicts gene flow in plant and animal populations”,
PNAS, Vol. 104, no. 50, December 11, 2007

Circuitscape (3 days to 3 mins)

App#2 Factoring network flow behavior
[Karpinski, Almeroth, Belding]

Algorithmic exploration

•  Many NMF variants exist in the literature
–  Not clear how useful on large data
–  Not clear how to calibrate (i.e., number of iterations to converge)

•  NMF algorithms combine linear algebra and optimization methods

•  Basic and “improved” NMF factorization algorithms implemented:
–  euclidean (Lee & Seung 2000)
–  K-L divergence (Lee & Seung 2000)
–  semi-nonnegative (Ding et al. 2006)
–  left/right-orthogonal (Ding et al. 2006)
–  bi-orthogonal tri-factorization (Ding et al. 2006)
–  sparse euclidean (Hoyer et al. 2002)
–  sparse divergence (Liu et al. 2003)
–  non-smooth (Pascual-Montano et al. 2006)

NMF traffic analysis results

Future Application Areas

Keitt: Linking complexity sciences to computational infrastructure for
 petascale network analysis

The Impossible Trinity

Languages
C++, F, MPI

Hardware
CPU, GPU,
Cell, XMT

Applications
GIS

Social Networks

CUDA

M, Py
*P

VACE

How will domain
scientists program ? …

… Or will computer
scientists program for

everyone ?

Special purpose hardware

Key Performance Metrics

Future Directions

•  What should KDT contain:
–  More algorithms ?
–  Visualization ?
–  Easy use of hardware accelerators (GPU, Cell) ?

Extra Slides

23

Star-P Functional Overview

Using Star-P – “Data parallel”

•  Large data problems
•  Use *p construct

–  Global parallelism
–  Variables become

parallel
–  Propagation occurs

•  Results are parallel
•  Functions performed

on parallel data

Using Star-P – “Task parallel”
•  Embarrassingly parallel apps
•  Monte-Carlo simulations
•  Use Star-P’s ppeval

T = 1; %Maturity of an option in years
sigma = linspace(.01,.8,256); %Volatility range from 0.01 to 0.8
Num_Sum = 12; %Number of contract dates in option duration
Num_Traj = 1000000; %Number of trajectories to solve

%Serial Version
for i=1:length(sigma)

 [price(i), vega(i)] = dao(T, Num_Sum, Num_Traj, sigma(i));
end

%Parallel Version with Star-P
[price vega] = ppeval(‘dao’,T, Num_Sum,Num_Traj, sigma);

%Asian Option Pricing Using Monte Carlo analysis

