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Model problem: linear elliptic PDE

Saturated flow of single phase incompressible fluid of pressure
p in reservoir Ω ⊂ Rd , d = 1, 2, 3{

Darcy′s law u = −K∇p
conservation of mass ∇ · u = f

Together

−∇ · K∇p = f , x = (x , y) ∈ Ω

+boundary conditions on ∂Ω

If Ω, K, f , and boundary conditions are smooth, then one can
prove well-posedness of the (weak formulation) of PDE,
formulate a numerical method whose solutions ph → p
with

‖ p − ph ‖?≤ Ch?
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Single phase flow in porous media: example

Permeability field K(x), x ∈ Ω Pressure profiles p(x), x ∈ Ω

Flow driven by boundary conditions

Heterogeneous K(x) and isolines of pressure p(x)

Flow driven by wells
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Introduction
Multiple scales in
subsurface

Upscaling flow
problems with effective
coefficients
Single phase flow in porous
nedia

Upscaling = finding effective
coefficients

Linear vs nonlinear
problems

Multiple scales in flow
without effective
coefficients
Presentation from Summer
School’2007

Non-elliptic and/or
nonlinear and/or
coupled problems
Reconstruction and
downscaling

Double-porosity
approaches for parabolic
problems

Bigger picture: beyond
meso-macro multiscale
modeling
Pore-scale modeling

Discrete modeling

Difficulties with K

(Images courtesy of Wikipedia www.wikipedia.org)

large Ω (reservoir/aquifer)
large variation and anisotropy in K(x)

multiple scales in K (and uncertainty)

SPE comparative solution project 60× 220× 85
(size 20’x10’x2’)
http://www.spe.org/csp/datasets/set01.htm

www.wikipedia.org
http://www.spe.org/csp/datasets/set01.htm
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Upscaling: analytical vs computational

Replace K by
effective (homogenized)
K∗ ≡ const
Can be computed/estimated
analytically

Works for periodic K

Replace Kh by
effective (upscaled) K∗

H
with h << H
Has to be computed/estimated
numerically

Works for any K, requires
computation
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Introduction
Multiple scales in
subsurface

Upscaling flow
problems with effective
coefficients
Single phase flow in porous
nedia

Upscaling = finding effective
coefficients

Linear vs nonlinear
problems

Multiple scales in flow
without effective
coefficients
Presentation from Summer
School’2007

Non-elliptic and/or
nonlinear and/or
coupled problems
Reconstruction and
downscaling

Double-porosity
approaches for parabolic
problems

Bigger picture: beyond
meso-macro multiscale
modeling
Pore-scale modeling

Discrete modeling

Upscaling approaches: [RenMar97]

Analytical approaches
Exact formulas and bounds
Homogenization

Computational approaches
Local upscaling

Sampling
Averaging
Renormalization
Pressure-solver based: classical FE and
mixed FE approaches with Dirichlet or
periodic boundary conditions

Global upscaling: takes into account global
boundary conditions

Which method is better/best ?
Upscaling = identification of coefficients
[NielTveito]
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Averages

Let K : Ω 7→ R, Ω ⊂ R. Define < K >:= 1
|Ω|

∫
Ω

K (x)dA

Let Ω = Ω1 ∪ Ω2 be a binary medium K = K1ξΩ1(x) + K2ξΩ2(x)

Arithmetic average
< K >∗A:=< K >= K1+K2

2

Harmonic average
< K >∗H :=< K−1 >−1=

2
K−1

1 +K−1
2

p-average
< K >∗p:=< K p >1/p

Geometric average
< K >∗G=

√
K1K2

Weighted averages (and more) needed for
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Introduction
Multiple scales in
subsurface

Upscaling flow
problems with effective
coefficients
Single phase flow in porous
nedia

Upscaling = finding effective
coefficients

Linear vs nonlinear
problems

Multiple scales in flow
without effective
coefficients
Presentation from Summer
School’2007

Non-elliptic and/or
nonlinear and/or
coupled problems
Reconstruction and
downscaling

Double-porosity
approaches for parabolic
problems

Bigger picture: beyond
meso-macro multiscale
modeling
Pore-scale modeling

Discrete modeling

Homogenization formula for K∗

K∗xx =
1
|Ω0|

∫
Ω0

K xx(x)∂x(ωxx(x) + x)dA

K∗xy =
1
|Ω0|

∫
Ω0

K xy (x)∂y (ωxx(x) + x)dA

K∗yy =
1
|Ω0|

∫
Ω0

K yy (x)∂y (ωyy (x) + y)dA

Where ωxx , ωyy solve the problems on Ω0{
−∇ · K∇(ωxx + x) = 0, x ∈ Ω0
ωxx Ω0 − periodic

{
−∇ · K∇(ωyy + y) = 0, x ∈ Ω0
ωyy Ω0 − periodic
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Back to porous media and typical
permeability field(s)

SPE 3D example 2D synthetic example:
original and upscaled

Large non-periodic variability and anisotropy
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Introduction
Multiple scales in
subsurface

Upscaling flow
problems with effective
coefficients
Single phase flow in porous
nedia

Upscaling = finding effective
coefficients

Linear vs nonlinear
problems

Multiple scales in flow
without effective
coefficients
Presentation from Summer
School’2007

Non-elliptic and/or
nonlinear and/or
coupled problems
Reconstruction and
downscaling

Double-porosity
approaches for parabolic
problems

Bigger picture: beyond
meso-macro multiscale
modeling
Pore-scale modeling

Discrete modeling

Upscaling: numerical homogenization
methods M

Fine grid (h) =⇒ coarse grid (H)

→ →

Simple averaging methods M = A, H
Bounds for simple materials: Hashin-Shtrikman
[JKO,RenMar97])
Numerical homogenization: pressure-solver [Durlofsky et
al’92-07]

Dirichlet M = D boundary conditions
periodic M = P boundary conditions

Quality of upscaling: depends on M, global boundary
conditions, and on numerical method [Trykozko, Zijl’99]
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Upscaling M = D with Dirichlet b.cond.

→ → [Durlofsky et al’92-07]

Solve for pxx
D

−∇ · K∇(pxx
D ) = 0, x ∈ Ω0

K∇pxx
D · n|y=0,y=1 = 0

pxx
D |x=0 = 0

pxx
D |x=1 = 1

Compute
K∗xx

D :=
∫

x∈∂Ω0:x=(1,y)
K∇pxxD (similar

for K∗yy ).

Computationally this is reasonably effective.
K isotropic gives K∗

D isotropic, K diagonal gives K∗
D diagonal
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Upscaling M = P with periodic b.cond.

Solve for pxx
0 (and a similar problem for

pyy
0 )
−∇ · K∇(pxx

0 ) = 0, x ∈ Ω0
pxx

0 |y=0 = pxx
0 |y=1

pxx
0 |x=0 = pxx

0 |x=1 − 1
K∇pxx

0 · n|y=0 = −K∇pxx
0 · n|y=1

K∇pxx
0 · n|x=0 = −K∇pxx

0 · n|x=1

Compute K∗xx , K∗xy from

K∗
[

1
0

]
=

[ ∫
x∈∂Ω0:x=(1,y)

K∇pxx
0 dγ∫

x∈∂Ω0:x=(x,1)
K∇pxx

0 dγ

]

≡ homogenization
Notice pxx

0 = wxx + x
K∗|upscaling =
K∗|homogenization !!!

K∗
P better than K∗

D. Computationally reasonable
K isotropic may give K∗

P possibly non-isotropic
K diagonal may give K∗

P non-diagonal
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Simulation results: fine vs coarse grid

Kh ph pH

Kh ph pH
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Comparison fine vs coarse grid (quantitative)

Accuracy of flux fH (outflow flux) depends on:
method M, global boundary conditions, approximation error
associated with h, H.

B1 B2 B3

BC M fh fH fH 7→h |
fh−fH

fh
| |

fh−fH 7→h
fh

|

B1 A 32.57484362 55.03545873 55.09824639 0.68950799 0.69143548
D 32.57484362 32.35069719 32.38584459 0.00688097 0.00580199
P 32.57484362 32.41986422 32.45464733 0.00475764 0.00368985
H 32.57484362 26.14566346 26.17359339 0.19736642 0.19650901

B2 A 51.38471961 58.92646422 58.97261428 0.14677018 0.14766831
D 51.38471961 51.34424224 51.38080698 0.00078773 0.00007614
P 51.38471961 50.55448835 50.58589065 0.01615716 0.01554604
H 51.38471961 35.73207110 35.77021427 0.30461679 0.30387449

B3 A 17.85362214 20.76764487 26.32567940 0.16321745 0.47452876
D 17.85362214 13.98183753 17.75764287 0.21686269 0.00537590
P 17.85362214 13.85705590 17.63303101 0.22385184 0.01235554
H 17.85362214 10.29882863 12.91371346 0.42315186 0.27668944

Comparison of M = A, D, P,H for Darcy flow for heterogeneous Kh.
For complicated flow pattern (B3) we use downscaled solution H 7→ h
to see combined effects of upscaling and coarse grid.
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Also, K∗
M (M = D, P) depends also on ...

Accuracy of K∗
M depends on h

Quality of K∗
M depends on the discretization method

Finite Elements overpredicts K∗
M “like” arithmetic mean

Finite Difference: underpredicts K∗
M “like” harmonic mean

[Trykozko,Zijl’99]
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Introduction
Multiple scales in
subsurface

Upscaling flow
problems with effective
coefficients
Single phase flow in porous
nedia

Upscaling = finding effective
coefficients

Linear vs nonlinear
problems

Multiple scales in flow
without effective
coefficients
Presentation from Summer
School’2007

Non-elliptic and/or
nonlinear and/or
coupled problems
Reconstruction and
downscaling

Double-porosity
approaches for parabolic
problems

Bigger picture: beyond
meso-macro multiscale
modeling
Pore-scale modeling

Discrete modeling

Linear vs nonlinear problems

Linear elliptic PDE

−∇h · (Kh∇hph) = 0.

−∇H · (KH∇HpH) = 0

Nonlinear elliptic PDE

∇ · K(∇ph) = 0, K(ξh) := K(αh; ξh).

∇ · K∗(∇pH) = 0,K∗(ξH) 6= K(αH ; ξH).

However, for non-Darcy flow

K(ξh) := K(Kh, βh; ξh) → K∗(ξH) = K(KH , βH ; ξH)

KH , βH are computed numerically; βH 6≡ const
We also consider K∗(ξH) ≈ K(KH , β

g
H ; ξH), βg

H = const
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Non-Darcy flow model 3

Extends a Darcy’s law: u = −K∇p
aControversies in literature

(K−1 + βI|u|)u = −∇p.

Combine with ∇ · u = 0 (mass
conservation)

u := K(D) componentwise

1D : (K−1 + β|u|)u = −dp
dx

2D : a) (K−1
m + βm|u|)um = − ∂p

∂xm
, m = 1, . . . d .

b) (K−1
m + βm|um|)um = − ∂p

∂xm
, m = 1, . . . d .

3More references follow at the end
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Extends a Darcy’s law: u = −K∇p
aControversies in literature

(K−1 + βI|u|)u = −∇p.

Combine with ∇ · u = 0 (mass
conservation)

u := K(D) componentwise

1D : (K−1 + β|u|)u = −dp
dx

2D : a) (K−1
m + βm|u|)um = − ∂p

∂xm
, m = 1, . . . d .

b) (K−1
m + βm|um|)um = − ∂p

∂xm
, m = 1, . . . d .

3More references follow at the end
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Heterogeneity in non-Darcy flow

K heterogeneous =⇒ β heterogeneous
[Geertsma,Jones]

β = gB(β0, K ) =

{
β0, B = 0 constant
β0√

K
, B = 1 correlated .

Competition of heterogeneity and inertia in 1D
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Competition of inertia and heterogeneity, 2D

Kh β0 = 0 β0 = 1 β0 = 1e2 β0 = 1e3

Kh β0 = 0 β0 = 1 β0 = 1e2 β0 = 1e3
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Understand heterogeneity & inertia via
estimates in 1D

(K−1 + β|u|)u = D := − dp
dx can be solved exactly in 1D.

Asymptotic (β ≥ βcrit := 2
|D|K 2 ) bounds are

independent of K !!!√
|D|
2β

≤ K(K , β; D) ≤

√
|D|
β

. β ≥ βcrit
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Upscaling non-Darcy: upscaled map βH

Needs logical verification: Kh ≡ const = K0 −→ KH = K0
for any H. For any βh = g(β0, Kh), we should have
βH = g(β0, KH): confirmed.
Consider the following Kh

Compute KH and determine βH(α) with Dirichlet data pD = α
via inverse modeling.
In general, for βh = g(β0, Kh) we have

βH(α) = (βH,1(α), βH,2(α)) = (R1(α),R2(α)) g(β0, KH)

Range of Ri(α), i = 1, . . . d ? Is Ri(α) ≥ 0 ?
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Upscaled map βH for layered field

Plots of Ri in βH(α) = (R1(α),R2(α)) g(β0, KH)

B = 0,V = 0 B = 0,V = 1 B = 1,V = 0 B = 1,V = 1

B = 0,V = 0 B = 0,V = 1 B = 1,V = 0 B = 1,V = 1

Figure: Top: Ri(α). Bottom: Ri(αβ0).
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Upscaled map βH for heterogeneous Kh

B = 0,V = 0 B = 0,V = 1 B = 1,V = 0 B = 1,V = 1

Figure: (R1,R2) as a function of αβ0.
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Introduction
Multiple scales in
subsurface

Upscaling flow
problems with effective
coefficients
Single phase flow in porous
nedia

Upscaling = finding effective
coefficients

Linear vs nonlinear
problems

Multiple scales in flow
without effective
coefficients
Presentation from Summer
School’2007

Non-elliptic and/or
nonlinear and/or
coupled problems
Reconstruction and
downscaling

Double-porosity
approaches for parabolic
problems

Bigger picture: beyond
meso-macro multiscale
modeling
Pore-scale modeling

Discrete modeling

Results: fine 30x30 vs coarse grid 6x6,
M = D

β0 = 0
Kh ph pH pg

H

β0 = 1
Kh ph pH pg

H
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Results: quantitative for M = D

Kh isotropic heterogeneous:

BC D β0 fh fH |
fh−fH

fh
| f gH |

fh−f gH
fh

|

B1 1 0 32.5748 32.350697 0.0068809674 32.350697 0.00688
B2 1 0 51.3847 51.344242 0.00078773182 51.344242 0.00078773182
B3 1 0 17.8536 13.981838 0.21686269 13.981838 0.21686269

B = 0 upscaling to 3x3
B1 1 0.01 8.30372 8.292560 0.0013440962 8.535338 0.02789

1 1 0.98079 0.980768 2.26e-005 0.984167 0.0034434907
1 100 0.0998039 0.099805 9.14e-006 0.099840 0.00036680035

B = 1 upscaling to 3x3
B2 1 0.01 8.46364 8.392461 0.0084098349 8.980445 0.061061964

1 1 0.981007 0.980862 0.00014691914 0.989225 0.0083772249
1 100 0.0998052 0.099805 4.8381498e-006 0.099892 0.00086514693

B = 0 upscaling to 3x3
B3 1 1 0.537621 0.443146 0.17572764 0.445521 0.17131009

1 0.01 4.49917 3.685097 0.18093908 3.846547 0.14505487
1 100 0.0548129 0.045192 0.17552435 0.045217 0.17507379

B = 0 upscaling to 6x6
B1 1 0.01 8.30372 8.296412 0.00088023584 8.525850 0.0267505

1 1 0.98079 0.980768 2.1964034e-005 0.984003 0.0032759738
1 100 0.0998039 0.099804 2.4940728e-006 0.099838 0.00033819023

B2 1 0.01 8.46364 8.391858 0.0084810113 8.933469 0.055511652
1 1 0.981007 0.980852 0.00015715651 0.988642 0.0077834603
1 100 0.0998052 0.099805 1.6263878e-006 0.099885 0.00080476623

Results are not worse than those for linear case.
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Recap: effective coefficients for elliptic PDEs

Linear problems
Effectiveness depends on global boundary conditions
Methods for periodic K may work for non-periodic K
large variance in K and medium correlation length difficult
channel and barriers systems difficult

Nonlinear problems
careful analysis of heterogeneity + nonlinearity necessary
conceptually different but computationally reasonable
accuracy may be comparable to one for linear case

What is “accuracy” of upscaling ? (use ph, pH , pH→h)

[GP08] http://www.math.oreognstate.edu/∼mpesz

http://www.math.oreognstate.edu/~mpesz
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Summer School Talk’2007: M. Peszynska, Survey of new
continuum numerical multiscale approaches and limitations
http://www.math.oregonstate.edu/∼mpesz/documents/presentations/msummer2007.pdf

http://www.math.oregonstate.edu/~mpesz/documents/presentations/msummer2007.pdf
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Numerical implementation and solving a
linear system

Discretize: define Ωh, choose V k
h

Assembly process with quadrature: compute for
each T the approximation to a(ph, qh)Z

T
(K(x)∇φi(x)∇φj(x)dA)h :=

X
m

wmK(xm)∇φi(xm)∇φj(xm)

Add over all elements T adjacent to node j for
each j (cost is O(Nh))

Solve linear system (A is sparse spd)

AP = F
...this requires O(N r

h) computational time r=3 for full GE ... to ...
r=1 for Full Multigrid solvers,
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Numerical simulation using original
K(x) = K(x, x

ε )

↔

To resolve the scales in
K(x), we need a grid
with h << ε ... this
means solving AP = F
with O(N r

h) complexity
and may be prohibitively
complex. a

aKeep in mind solving
nonlinear transient problems
K = K(x, p,∇p)

How not to solve with h << ε (but with ε < H)
use multigrid or HPC-friendly solvers
use multiscale FE or subgrid or mortar methods
recover (reconstruct) details with correctors/downscaling
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Recap: solving elliptic problems without
effective coefficients

Details in Summer School Talk’2007: M. Peszynska, Survey of
new continuum numerical multiscale approaches and
limitations
http://www.math.oregonstate.edu/∼mpesz/documents/presentations/msummer2007.pdf

Elliptic problems with multiscale coefficients lead to large
linear systems
Methods aim to reduce complexity but to use original K(x)

Multiscale FE
Variational multiscale FE
Subgrid methods
Mortar methods

Not all are applicable and/or perform equally well when
applied to transient coupled nonlinear problems

http://www.math.oregonstate.edu/~mpesz/documents/presentations/msummer2007.pdf
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Nonlinear transients, non-separated scales 4

If heterogeneity is ≈ periodic and well-separated, use
homogenization [Arbogast97,Bourgeat,BourKozMik95] But if not
... ? [PS07]

Use upscaled coefficients: how to handle nonlinearity ?
[Durlofsky et al,Trykozko and Zijl] [GP08] [Efendiev et al]

Homogenization: well-posedness and structure of limit current
work on pseudo-parabolic equations [PSY08]

Transient behavior with large contrast of coefficients:
double-porosity [Arbogast-Douglas-Hornung’89]. [PS07].

Methods of moments: small variance only.

Pseudo-functions for nonlinear transport: multiphase flow

Systems: flow and transport, multiphase flow

4More references follow at the end
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Reconstruction and downscaling

Flow coupled to transport

u = −K∇p, ∇ · u = 0

φ
∂c
∂t
∇ · (uc − D(u)∇c) = 0

Need accurate ch but can solve only for coarse pH

... have to reconstruct uh from uH

Ideas to prevent reconstruction
[Oden, Vemaganti]: use the coarse solution pH as
boundary conditions for the local problem solved for ph

global-local upscaling [Durlofsky, Chen, Gerritsen]
use global information [Efendiev’06,’07] and [PWY02]
nonlocal discrete double-porosity models with higher order
averaging [PS07]
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Example: small 7→ large contrast in
diffusive–dispersive transport

From top to bottom: contrast 30,100,300,1800,3000 in K(x).
[PS07] and current numerical work with Yi.
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Example: mortar upscaling for multi-phase
flow [P05]
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At meso/macroscale and
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Flow: multiphase (solid, liquid,
aqua, gaseous)

Transport: multicomponent

Bio-Chemistry:

Computational models
discrete network
approaches

Lattice-Boltzmann models

traditional CFD
approaches: compute
K, β
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Pore-scale simulations of inertia effects

Upscaling Stokes and Navier-Stokes flow at pore-scale to
meso-scale (Darcy scale).

Re=1 Re=100
Shown: profiles of pressure and contours of velocities computed with
a very simple numerical solver in stream function-vorticity formulation
[APT08].
Computed K, β are stable for medium and fine mesh but not for
coarsest mesh.
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HPC pore-scale work with Trykozko

(A) (B)

(A): velocity for Re = 100, φ ≈ 0.3 (solid of relative
diameter=90%).
(B): plot of β(Re) for solids of relative diameter 70% and 90%,
and 90% with refined grid. Note β ≈ 0 for small Re; β
correlates with negative powers of K as in [Geertsma,Jones].
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phase transitions



Computational
multiscale methods for
coupled phenomena in

the subsurface

Małgorzata Peszyńska
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Emerging coupled multiscale modeling

Current: upscaling (one way modeling)

Future: dynamic couplings
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Thank you -
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