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Origins

Homogenization is a collection of methods to approximate a
heterogeneous problem by a homogeneous one.

Example (Elliptic)

Aε(uε) = f : −
∑

(aε
ij(x)uε

xi
)xj = f , where aε

ij(x) = aij(x/ε), and aij(·)
are 1-periodic in<n.

Exact model at microscale

aij(x/ε)

replaced by homogenized model

with constant ãij
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First Issues

Question

Can we find a limiting problem, Au = f , whose solution u
characterizes the limit, lim

ε→0
uε = u ?

Example (Elliptic)

A(u) = f : −
∑

(ãijuxi )xj = f , where ãij are constant.

This is the homogenized equation with effective coefficients.

Question

Is A of the same type as Aε?

The answer is frequently ‘No!’.
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An Elliptic Problem

Let Y be the unit cube in <N . Assume a(·) is Y -periodic. We want to
approximate the solution to the singular problem

uε ∈ H1
0 (Ω) :∫

Ω

a(x/ε)∇uε(x) ·∇ϕ(x) dx =

∫
Ω

F (x)ϕ(x) dx for all ϕ ∈ H1
0 (Ω).

(1)
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The approximation

We seek an approximation

uε(x) = u(x , x/ε) + εU(x , x/ε) +O(ε2), x ∈ Ω,

in which each u(x , y) and U(x , y) is Y -periodic.

The gradient is given (formally) by

∇uε(x) = ∇xu(x , x/ε) +
1
ε
∇y u(x , x/ε) + ∇y U(x , x/ε) +O(ε).
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The solution uε has a bounded gradient, so ∇y u(x , y) = 0 and

uε(x) = u(x) + εU(x , x/ε) +O(ε2) (2a)

∇uε(x) = ∇u(x) + ∇y U(x , x/ε) +O(ε) (2b)

Substitute (2) into (1) with a test function of the same form

ϕ(x) + εΦ(x , x/ε)

where Φ(x , y) is Y -periodic for each x ∈ Ω.
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The variational form

Two-scale limits ε → 0 give the system

u ∈ H1
0 (Ω), U ∈ L2(Ω, H1

#(Y )) :∫
Ω

∫
Y

a(y)(∇u(x) + ∇y U(x , y)) · (∇ϕ(x) + ∇yΦ(x , y)) dy dx

=

∫
Ω

F (x)ϕ(x) dx for all ϕ ∈ H1
0 (Ω), Φ ∈ L2(Ω, H1

#(Y )). (3)
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The homogenized system

Decouple the system:

U ∈ L2(Ω, H1
#(Y )) :∫

Ω

∫
Y

a(y)(∇y U(x , y) + ∇u(x)) ·∇yΦ(x , y) dy dx = 0

for all Φ ∈ L2(Ω, H1
#(Y )). (4a)

u ∈ H1
0 (Ω) :∫

Ω

∫
Y

a(y)(∇u(x) + ∇y U(x , y)) dy ·∇ϕ(x) dx =

∫
Ω

F (x)ϕ(x) dx

for all ϕ ∈ H1
0 (Ω). (4b)
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The Cell problem

The local problem (4a) is equivalent to requiring

U(x , ·) ∈ H1
#(Y ) :∫

Y
a(y)(∇y U(x , y) + ∇u(x)) ·∇yΦ(y) dy = 0 for all Φ ∈ H1

#(Y ).

Define ωi(y) for each 1 ≤ i ≤ N to be the solution of the cell problem

ωi ∈ H1
#(Y ) :

∫
Y

a(y)(∇yωi(y)+ei)·∇yΦ(y) dy = 0 for all Φ ∈ H1
#(Y ).

(5)
where ei is the indicated coordinate vector in <N .
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The Homogenized problem

By linearity the solution is given by

U(x , y) =
i=N∑
i=1

∂iu(x)ωi(y)

This is substituted into (4b) to obtain

u ∈ H1
0 (Ω) : ∫

Ω

ãij∂iu(x) · ∂jϕ(x) dx =

∫
Ω

F (x)ϕ(x) dx

for all ϕ ∈ H1
0 (Ω). (6)

where the constant coefficients are given by

ãij =

∫
Y

a(y)
(
δij + ∂jωi(y)

)
dy . (7)
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The approximate solution

uε(x) = u(x) + ε ∇u(x) · (ω1(x/ε), ω2(x/ε), . . . , ωN(x/ε)) +O(ε2) ,

∇uε(x) =

∇u(x) + ∇u(x) · (∇ω1(x/ε), ∇ω2(x/ε), . . . , ∇ωN(x/ε)) +O(ε)

of the singular elliptic problem.
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Homogenization

Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou.
Asymptotic analysis for periodic structures, volume 5 of Studies in
Mathematics and its Applications.
North-Holland Publishing Co., Amsterdam, 1978.

Enrique Sánchez-Palencia.
Nonhomogeneous media and vibration theory, volume 127 of Lecture
Notes in Physics.
Springer-Verlag, Berlin, 1980.

V. V. Jikov, S. M. Kozlov, and O. A. Oleinik.
Homogenization of differential operators and integral functionals.
Springer-Verlag, Berlin, 1994.
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Multiscale Flow and Transport ... the model

u(x) = −K(x)∇p(x), ∇ · u(x) = 0

φ
∂c(x , t)

∂t
+∇ · (u(x)c(x , t)− D(u(x))∇c(x , t)) = 0

Kfast , Kslow → ufast , uslow → Dfast , Dslow
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The Parabolic Equation

The Exact Model ... with fine-scale coefficients

φ(x)
∂c
∂t

−∇ · D(x)∇c = 0, x ∈ Ω,

with D(x) = Dslow on Ωslow and = Dfast on Ωfast .
... or in transmission form

φα
∂cα

∂t
−∇ · Dα∇cα = 0, x ∈ Ωα, α = fast , slow

with the interface conditions on ∂Ωslow ∩ ∂Ω fast :

cfast = cslow , Dfast∇cfast · ν = Dslow∇cslow · ν

Homogenization and Multiscale Modeling



Homogenization
Modeling Flow and Transport

Multiscale Flow and Transport
The Classical Case
The Highly-Heterogeneous Case
The Affine Coupling
Computational Experiments

The Classical Case

The coefficients are D = [Dfast , Dslow ] :

φ̃
∂c̃
∂t

−∇ · D̃∇c̃ = 0

The fine-scale geometry is eliminated . . .
. . . replaced by the constant effective coefficient D̃.

The upscaled limit is of the same type . . . a single equation.

The fast and slow regions are coupled by gradients of the
solution (flux) .

Accurate only in this low contrast case.
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... the algorithm
Exact model at microscale

D(x) = Dslow , Dfast

replaced by homogenized model

with constant D̃

Compute homogenized coefficient D̃ = D̃(Dfast , Dslow )

D̃jk =
1
|Ω0|

∫
Ω0

Djk (y)(δjk + ∂kωj(y))dA

{
−∇ · D(y)∇ωj(y) = ∇ · (D(y)ej),
ωj(y) is Ω0 − periodic.

It works well for problems with low contrast Dfast/Dslow
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The Obstacle Problem . . . a special case

The coefficients are D = [Dfast , 0] :

φ̃0 ∂c̃0

∂t
−∇ · D̃0∇c̃0 = 0

The slow region Ωslow is impervious.
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Classical homogenization is not adequate for time-dependent
problems with large contrast Dfast/Dslow

Low contrast: classical
homogenization

‖ uε ‖0 + ‖ ∇uε ‖0≤ C
local averages

High contrast: double porosity models

‖ uε ‖0 +ε ‖ ∇uε ‖≤ C
local averages versus special averages
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The Double-porosity model

The coefficients are D = [Dfast , ε
2
0Dslow ] :

φ̃0 ∂c̃
∂t

+
∑

i

χiqi(t)−∇ · D̃0∇c̃ = 0, qi(t) =
1

|Ω̂i |

∫
Γi

Dslow∇ci · νds,

φslow
∂ci

∂t
−∇ · Dslow∇ci = 0, ci |Γi =

1

|Ω̂i |

∫
Ω̂i

c̃(x)dA.

The upscaled model is a system, highly parallel.

The coupling from the cell to global equation is via gradients.

The coupling from the global equation to the cell is via the values.

The contribution of the cells is a secondary storage.

Accurate only in this high contrast case.

It will not couple any advective effects to the local cell.
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Double-porosity Micro-structure Model
Exact model replaced by two

layers

+

Global equation, x ∈ Ω

φ̃0 ∂c̃
∂t

+
∑

i

χiqi(t)−∇ · D̃0∇c̃ = 0

qi(t) = Π∗
0,i(Dslow∇ci(·, t) · ν)

Cell problem at each x ∈ Ωi

φslow
∂ci

∂t
− ∇ · Dslow∇ci = 0

ci |Γi = Π0,i(c̃)(t)
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Notes

The coefficients in the global equation are precisely those of the
obstacle problem.

The cell input to the global equation is

qi(t) =
1

|Ω̂i |
∂

∂t

∫
Ωi

φslow ci(x, t) dx

. . . the rate of secondary storage.

The spatially-constant input to the cell problem will not transmit
any advective transport.

We shall more tightly couple the cell by replacing the constant
coupling with an affine coupling to the surrounding fast medium. This
will provide a gradient coupling.
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Affine approximations Π1

AVERAGE: Π0f = 1
|Ω0|

∫
Ω0

f (x)dA; assume here |Ω0| = 1.

Denote xC - center of mass of Ω0.
General affine approximation f (x) ≈ Π1f := m + n · x, x ∈ Ω0

Choice of m, n

Taylor (f ∈ C1(Ω0)) about midpoint
f (x) ≈ f (xC) +∇f (xC)(x − xC)

L2(Ω0)-projection onto affines that is:
(f , v)Ω0 = (m + n · x, v)Ω0 , ∀ affinev

H1(Ω0) projection:
f (x) ≈ Π1f := Π0f + Π0∇f · (x − xC)
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Summary: the affine coupling Πi and its dual Π∗
i

Affine coupling Πi : H1(Ω) 7→ H1(Ω̂i)

Πi(w)(x) ≡ Π0w + Π0(∇w) · (x − xC)

Its dual Π∗
i : H1(Ω̂i)

∗ 7→ H1(Ω)∗ pointwise

Π∗
i (q)(x) = χ̄i(x)M0

i (q)−∇ · χ̄i(x)M1
i (q)
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Double-porosity Model with secondary flux

φ̃0 ∂c̃
∂t

+
∑

i

χiqi(t)−∇ · D̃0∇c̃ = 0,

φslow
∂ci

∂t
−∇ · Dslow∇ci = 0,

ci |Γi =
1

|Ω̂i |

∫
Ω̂i

c̃dA +
1

|Ω̂i |

∫
Ω̂i

∇c̃ dA · (x − xC).

qi(t) =
1

|Ω̂i |

∫
Γi

Dslow∇ci · νds −∇ · χ̄i(x)

|Ω̂i |

∫
Γi

Dslow∇ci · ν (x − xC)dS

This is
∂

∂t
(secondary storage) −∇· (secondary flux) from the local

cells.
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Computational experiments at microscale
GOAL: reproduce qualitatively experimental results
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Porous Media

Ulrich Hornung, editor.
Homogenization and Porous Media, volume 6 of Interdisciplinary
Applied Mathematics.
Springer-Verlag, New York, 1997.

Peszynska, M.; Showalter, R. E.
Multiscale Elliptic-Parabolic Systems for Flow and Transport ,
Electron. J. Differential Equations 2007, No. 147, 30 pp. (electronic).
http://ejde.math.txstate.edu/Volumes/2007/147/abstr.html

Brendan Zinn, Lucy C. Meigs, Charles F. Harvey, Roy Haggerty,
Williams J. Peplinski, and Claudius Freiherr von Schwerin.
Experimental visualization of solute transport and mass transfer
processes in two-dimensional conductivity fields with connected
regions of high conductivity.
Environ Sci. Technol., 38:3916–3926, 2004.
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