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Introduction

Homogenization

Origins

Homogenization is a collection of methods to approximate a
heterogeneous problem by a homogeneous one.

Example (Elliptic)

Ac(ue) =f: = (aj(x)uy )y =T, where af(x) = ajj(x/e), and aj(-)
are 1-periodic inR".

Exact model at microscale

replaced by homogenized model

with constant &;
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Introduction

Homogenization

First Issues

Can we find a limiting problem, .Au = f, whose solution u
characterizes the limit, Iirrz) u¢=u?
€e—

Example (Elliptic)
A(u) =f: =3 (&jux)x = f, where &; are constant.

This is the homogenized equation with effective coefficients.

Is A of the same type as A<?

The answer is frequently ‘No!".
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Introduction
Two-scale approximation
The Homogenized problem

Homogenization

An Elliptic Problem

Let Y be the unit cube in RN. Assume a(-) is Y -periodic. We want to
approximate the solution to the singular problem

uc € H}(Q) :
/ a(x/e)Vue(x) - Vo(x)dx = / F(X)p(x) dx for all p € H3(Q).
Q Q (1)

Permeabilities
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Introduction

Homogenization

roximation
ized problem

The approximation

We seek an approximation
us(x) = u(x,x/e) + eU(x,x/e) + O(?), x €Q,

in which each u(x,y) and U(x,y) is Y -periodic.

The gradient is given (formally) by

Vue(x) = Vyxu(x,x/e) + %Vyu(x,x/e) + VyU(x,x/e€) + O(e).
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Introduction

Homogenization P
Two-scale approximation

The Homogenized problem

The solution u® has a bounded gradient, so Vyu(x,y) = 0 and

u‘(x) = u(x)+eU(x,x/e) + O(e?) (2a)
Vue(x) = WVu(x)+ VyU(x,x/e) + O(e) (2b)

Substitute (2) into (1) with a test function of the same form
P(X) + ed(x, X /€)

where ®(x,y) is Y -periodic for each x € Q.
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Homogenization P
roximation

ized problem

The variational form

Two-scale limits € — 0 give the system
u€H§(Q), UeL?(QHLY)):
[ [ ) (u60) + y00c.9)) - (Vo) + Ty o(c.y) dly de

_ / F(x)p(x)dx for all o € H(Q), ® € L2, HL(Y)). (3)
Q
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Tw pproximation
The jenized problem

Homogenization

The homogenized system

Decouple the system:
U € LA(Q, H;(Y)) :

/ / (X,y) + Vu(x)) - Vyd(x,y)dydx =0
forall ® € L*(Q,HL(Y)). (4a)

ueHO Q):

[ [ am)vu60 + 0y ay - Tetyax = [ F 0w
forall o € H3(Q). (4b)
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Homogenization P
roximation

ized problem

The Cell problem

The local problem (4a) is equivalent to requiring
U(x, ) € HL(Y):
/ a(y)(VyU(x,y) + Vu(x)) - Vyo(y) dy = 0 for all & € HL(Y).
Y

Define wi(y) for each 1 <i < N to be the solution of the cell problem

w € H(Y) - /Y a(y)(Vywi(y)-+e)-Vyo(y)dy = 0 forall & € HL(Y).
5)

where e is the indicated coordinate vector in ®N.
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Homogenization

The Homogenized problem

By linearity the solution is given by

i=N
U(x,y) =Y au(X)wi(y)
i=1

This is substituted into (4b) to obtain
ueHQ):
[ &10u(0) - 3px)dx = | Fx)olx)dx
Q Q

forall o € H3(Q). (6)

where the constant coefficients are given by
aj = /Y a(y) (6 + dwi(y)) dy . (7)
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Homogenization
™ pproximation

The Homogenized problem

The approximate solution

UE(X) = U(X) + € VU(X) - (wr(X/e), wa(X/e), ... , wn(X/e)) + O(&),
Vue(x) =
Vu(x) + Vu(x) - (Vwi(x/e), Vwa(x/e), ..., Vwn(x/e€)) + O(e)

of the singular elliptic problem.
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Homogenization
proximation

The Homogenized problem

Homogenization

[@ Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou.
Asymptotic analysis for periodic structures, volume 5 of Studies in
Mathematics and its Applications.

North-Holland Publishing Co., Amsterdam, 1978.

[d Enrique Sanchez-Palencia.
Nonhomogeneous media and vibration theory, volume 127 of Lecture
Notes in Physics.
Springer-Verlag, Berlin, 1980.

[§ V. V.Jikov, S. M. Kozlov, and O. A. Oleinik.
Homogenization of differential operators and integral functionals.
Springer-Verlag, Berlin, 1994.
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Modeling Flow and Transport

Kfasts Kslow = Ufasts Usiow —  Diasts Dslow J

Permeabilities
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Multiscale Flow and Transport
The C Case

The Highly-Heterogeneous Case
The A pling

Computa periments

Modeling Flow and Transport

The Parabolic Equation

The Exact Model ... with fine-scale coefficients

¢(x)g—$ —V-D(x)Vc =0, x €Q,

with D(X) = Dgjow 0N Qgjow and = Diagt ON Qsast -
... Or in transmission form

JCq
¢a W

—V:-D,Vc, =0, x € Q,, a="fast,slow

with the interface conditions on 9Qgjow N O fast:

Crast = Cslows Drast VCast * ¥ = Dsjow VCslow - ¥

Homogenization and Multiscale Modeling



Multiscale Flow and Transport
The Classical Case

The Highly-Hete eous Cast
Modeling Flow and Transport e g eterogeneous L.ase

Case

The coefficients are D = [Diast, Dsiow] :

<z5f—V DVE =0

@ The fine-scale geometry is eliminated . . . B
.replaced by the constant effective coefficient D.

@ The upscaled limit is of the same type ... a single equation.

@ The fast and slow regions are coupled by gradients of the
solution (flux) .

@ Accurate only in this low contrast case.
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nd Transport
The Classlcal Case
The H

Modeling Flow and Transport

. the algorithm

Exact model at microscale replaced by homogenized model

with constant D

o e e D(X) = Dsiow s Drast

Compute homogenized coefficient D = D(Dast, Dsiow) J

o~ 1
Dj« o [ Di(¥)(0ik + Gkwj(y))dA
10| Ja,

~V-D(y)Vuwi(y) =V-(D(y)e), el
wi(y)is Qo — periodic
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nd Transport
The Classlcal Case
The H

Modeling Flow and Transport

. the algorithm

Exact model at microscale replaced by homogenized model

with constant D

o e e D(X) = Dsiow s Drast

Compute homogenized coefficient D = D(Dast, Dsiow) J

A Dik (Y)(dik + Gkwi(y))dA

~V-D(y)Vuwi(y) =V-(D(y)e), el
wi(y)is Qo — periodic

blems with Drast / Dsiow
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nd Transport
The Classlcal Case

Modeling Flow and Transport

Problem ... a special case

The coefficients are D = [Dy,st, 0] :

0
¢° 80 v . BOVEO

@ The slow region Qg iS impervious.
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Multiscale Flow and Transport
The Classical Case
The Highly-Heterogeneous Case

Modeling Flow and Transport

periments

Classical homogenization is not adequate for time-dependent
problems with large contrast Diast /Dsiow

Low contrast: classical High contrast: double porosity models
homogenization :

lue flo +e || Vue < C
|| Uc flo + || Vue [o< C local averages versus special averages
local averages
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Modeling Flow and Transport

model

The coefficients are D = [Dyast, €3Dslow] :

o9& o .
¢Oa+2XiQi(t)—V-DOVC:0, qi(t) = Al Ds|0WVc. vds,
]

¢s|ow -V DS|OWVCI — 0 |‘FI = |Q | / A-

@ The upscaled model is a , highly parallel.

@ The coupling from the cell to global equation is via gradients.

@ The coupling from the global equation to the cell is via the values.
@ The contribution of the cells is a secondary storage.

@ Accurate only in this high contrast case.

@ It will not couple any advective effects to the local cell.
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Modeling Flow and Transport

Exact model pomcasiie replaced by two
layers

Global equation, x € Q

~n OC S s 0G;
QSOa‘in:XiQi(t) - V- DOVC =0 (Zsslowa*tl - V. Djlowvci =0
il = Moi(C)(t)

Qi(t) = né,i(DslowVCi('7t) ! V)
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Modeling Flow and Transport

@ The coefficients in the global equation are precisely those of the
obstacle problem.

@ The cell input to the global equation is

qi |Q | (9t / (bSlOWCI(X t

..the rate of secondary storage.
@ The spatially-constant input to the cell problem will not transmit
any advective transport.

We shall more tightly couple the cell by replacing the constant
coupling with an affine coupling to the surrounding fast medium. This
will provide a gradient coupling.
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Modeling Flow and Transport

Computational Experiments

Affine approximations 1

AVERAGE: Mof = ﬁ Ja, T(x)dA; assume here [Qo| = 1.
Denote x° - center of mass of Q.
General affine approximation f(x) =~ Mif :=m+n-x, x € Qo

@ Taylor (f € C(Qp)) about midpoint

original
Taylor

L2
H1

@ L,(Qp)-projection onto affines that is:
(f,v)a, = (M+n-X,V)q,, ¥V affinev
@ H(Qo) projection:
f(x) ~ Myf := Mof + MNoVF - (x — x©)

original, Taylor, L2, H1
% o 5,
T T T
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The Highly-Heterogenec
The Affine C
Computational Ex

Summary: the affine coupling I1; and |ts dual [T

Modeling Flow and Transport

Affine coupling IM; : HY(Q) — H()
Mi(w)(x) = New + Mo(VW) - (x — x°)
Its dual 11" : HL(4)* — H(Q)* pointwise

(x) = xi(x) - V- XM (a)
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Modeling Flow and Transport

Computational

Double-porosity Model with secondary flux

OC;
¢s|ow ot -V DS|0WVCI = 0
= ~ VEdA - (x —x°).
= 7, G0A+ [ VEdA-(—x®)
1 v
ai(t) = |Q | Dslowvc| vds -V - ng|) / Dsiow VG - v (X — XC)dS
i [

This is % (secondary storage) —V- (secondary flux) from the local
cells.
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Modeling Flow and Transport

ipling
Computational Experiments

Computational experiments at microscale
GOAL: reproduce qualitatively experimental results

yd

Row-20-3-5 breakthrough curves

ratio 1/ 6

ratio 1/ 10
ratio 1/ 30
ratio 1/ 100
ratio 1/ 300
ratio 1/ 1800
ratio 1/3000

breakihrough curve data
< © . _
— 77—
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Modeling Flow and Transport

Computational Experiments

Porous Media

[@ Ulrich Hornung, editor.
Homogenization and Porous Media, volume 6 of Interdisciplinary
Applied Mathematics.
Springer-Verlag, New York, 1997.

[3 Peszynska, M.; Showalter, R. E.
Multiscale Elliptic-Parabolic Systems for Flow and Transport ,
Electron. J. Differential Equations 2007, No. 147, 30 pp. (electronic).
http://ejde.math.txstate.edu/Volumes/2007/147/abstr.html

[§ Brendan Zinn, Lucy C. Meigs, Charles F. Harvey, Roy Haggerty,
Williams J. Peplinski, and Claudius Freiherr von Schwerin.
Experimental visualization of solute transport and mass transfer
processes in two-dimensional conductivity fields with connected
regions of high conductivity.

Environ Sci. Technol., 38:3916-3926, 2004.
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