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You are not a computer scientist, but a chemist!
¢ You study new polymers and their efficient production

e The search space is too big to try all possible approaches
in the lab
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Kinetic models (here, polymerisation of bulk styrene)
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You are not a computer scientist, but a chemist!
¢ You study new polymers and their efficient production

e The search space is too big to try all possible approaches
in the lab
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Exploration by way of computational chemistry
e Turn kinetic models into PDEs
 Solve with a deterministic solver, esp. h-p-Galerkin method |
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Solving PDEs gives molecular weight distribution (MWD)
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Solving PDEs gives molecular weight distribution (MWD)
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Problems encountered by chemists
e Scalability: slow for complex systems (star polymers)
e Generality: missing microscopic information:
» multiple chain lengths (i.e., star polymers)
» cross-linking densities and branching
» copolymer composition
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e Improving both speed and information content seems hard
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~ Back
Rese

Attack the problem from a different angle
¢ Replace deterministic by stochastic solver
e Don’t solve PDEs, use microscopic simulation
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Attack the problem from a different angle
¢ Replace deterministic by stochastic solver
e Don’t solve PDEs, use microscopic simulation
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In other words, turn the problem into a programming languages
problem

Regard kinetic models as Decomposition/Initiation

probabilistic rewrite systems I — 2Ie k4
Ie + M — P(1) ki
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Back To
Research

Attack the problem from a different angle
¢ Replace deterministic by stochastic solver
e Don’t solve PDEs, use microscopic simulation

In other words, turn the problem into a programming languages
problem

Regard kinetic models as Decomposition/Initiation

probabilistic rewrite systems I — 2le k4
Ie + M — P(1) k;

Potential to gain both speed and information content
e Microscopic simulation gives microscopic information
e Stochastic solvers (Monte-Carlo) are easier to parallelise o
e We know much about speeding up the execution of RSes | ¢
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Microsc

The soup—aka system state
e Multiset of molecules
e Subscript is chain length of a polymer
e Monomers have no subscript
e Star polymers have multiple subscripts
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Microscopic simulation of polymerisationiieHeS

The soup—aka system state
e Multiset of molecules
e Subscript is chain length of a polymer
e Monomers have no subscript
e Star polymers have multiple subscripts

Reactions with rate coefficients—aka probabilistic rewrite rules
Reactions:

e Consume one or two molecules
I— Te+Te [Ky

]
le + M — Pq [K;]
Pp+M — Ppyq [kp1

Pn+Pm+— Dpim (K]

e Produce one or two molecules
Rate coefficients:

e Reaction probability relative to
molecule concentration
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Structure of the simulation

Reactions System
update A
Pn+Pm— Py | probabilities [—
H+Pm—P1 4y, 1 e
Py —Qm . I P
pick 4 I| update
random Qs Ps system
molecule -
P; Q2
3 - 4

2

pick random reaction

@ Compute reaction probabilities, known as rates:
» Product of the reaction’s rate coefficient and current
concentration of the reactants
» Stored in reaction rate tree
» Determines the probability distribution function
» Rate coefficients are experimentally determined D
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Structure of the simulation

Reactions System
update A
Pn+Pm—Pp, i m probabilities —
HPm Py DN S—
Pmpm—Qm . I P
pick L I| update
random Qs Ps system
molecule ;
P Q2
3 - 4

2

pick random reaction

@ Randomly pick a reaction

» Reaction rate tree enables fast reaction selection given a
uniformly distributed random number

» E.g., we might pick P, + Pm — Ppim
[NB: we haven'’t fixed n and m yet]
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Structure of the simulation

Reactions System
update A
Pp+Pm—P, ., | probabilities e
I+P1n’—‘Pl+m 1 ;:::/
Py —Qm
) I
pick P I| update
rarlldonlz Qs Ps system
molecule -
P; Q2
3 - 4

pick random reaction 2

® Randomly pick the molecules
» For monomeres, there is nothing to do
» For polymeres, we need to pick one or more chain lengths
» E.g., For P, + Py — Phim, pick nand m randomly (from
available lengths)
» In some systems, different chain lengths react with different | ©)®
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Structure of the simulation

Reactions System
update y
Pn+Pm—Py 4, | Probabilities —
PP D S——
Pmpm—Qm -
: Ip
pick 4 I| update
random Qs Ps system
molecule
P Q2
3 - 4

2

pick random reaction

@ Compute reaction products
» Update the concentration of molecules
» E.g., remove P, and P, and add P,
» Advance system clock (non-trivial)
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Reaction kinetics as probabilistic multiset rewriting

¢ Direct implementation of the four simulator steps
— interpreter for the rewrite system
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Reaction kinetics as probabilistic multiset rewriting

¢ Direct implementation of the four simulator steps
— interpreter for the rewrite system

e Performance is an issue: Let’'s compile the rewrite system!

Which part of the simulator is worth compiling?
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Specialisation

Reaction kinetics as probabilistic multiset rewriting

e Direct implementation of the four simulator steps
— interpreter for the rewrite system

e Performance is an issue: Let’'s compile the rewrite system!

Which part of the simulator is worth compiling?

e Only code that depends on the kinetics model (our
“program”)

e The code that updates the system state according to a
selected reaction and reactants:

@ Update molecule count—i.e., reactant concentrations
@ Adapt reaction probabilities
© Modify reaction rate tree
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Runtime system as template (using CPP to instantiate)

#include "genpolymer.h" // generated by simulator generator

void oneReaction () {
// ...variable declarations omitted. ..

@ updateProbabilities ();
@ reactIndex = pickRndReact ();

®molllen = pickRndMol (reactToSpecIndl (reactIndex));

if (consumesTwoMols (reactIndex))

mol2Llen = pickRndMol (reactToSpecInd2 (reactIndex))

@ switch (reactIndex) // compute reaction products
DO_REACT_BODY // defined in genpolymer.h
incrementMolCnt (resMollSpec, resMollLen);
if (resMolCnt == 2)
incrementMolCnt (resMol2Spec, resMol2Len) ;
advanceSystemTime (); // compute At of this reaction
}
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Simulator generator in Haskell
e Compiles the kinetics model (probabilistic rewrite system)

e For example,
(1 I+ o |

#define I_Star 2
#define DECOMPOSITION O

#define DO_REACT_BODY \
{case DECOMPOSITION:\
resMolCnt = 2;\
resMoliSpec = I_Star;\
resMol2Spec = I_Star;\
break;\

genpolymer.h A
1
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Haskell

Programming in Haskell
e Popular functional language: fast, all functions, no OQO!
e Pure — no side effects by default
Richly and strongly typed — no runtime type errors
Easy to parallelise, implicit and explicit cheap threads
Algebraic data types — good for symbolic manipulation

Example: data parallel dot product

dotp :: [: Double :] — [: Double :] — Double
dotp vw = sumP (zipWithP (x) v w)
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Specialising Simulator Generator
e Input is reaction specification
e Custom C runtime for reaction generated from Haskell
¢ All inputs become static constants

e C compiler then aggressively optimises the reaction
implementation

¢ Run compiled reaction and inspect results

Portability

e Simulator generation easy to retarget: single core,
multicore, clusters

e Just port the simulator runtime
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 Parall

Vanilla Monte-Carlo
e Probability distribution function is static
¢ All stochastic events are independent
e Embarrassingly parallel
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Paralleli

Vanilla Monte-Carlo
e Probability distribution function is static
¢ All stochastic events are independent
e Embarrassingly parallel

Markov-chain Monte-Carlo
e Probability distribution function is dynamic
e |t is dependant on previous stochastic events
e Fully sequential (no parallelism)
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Parallelisation

Vanilla Monte-Carlo
¢ Probability distribution function is static

¢ All stochastic events are independent
e Embarrassingly parallel

Markov-chain Monte-Carlo
e Probability distribution function is dynamic
e |tis dependant on previous stochastic events
e Fully sequential (no parallelism)

Our solution: stirring
e Physical reality: only molecules in close proximity can react
e Stirring: regularly, exchange and average system state
e Optimal stirring frequency dependant on Brownian motion | ¥
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Specialised versus unspecialised
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Parallel speedup
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[P4 cluster = Intel P4, 3.2GHz, with GigaBit Ethernet;
Opteron SMP = AMD Athlon 64 3200+, 2.2GHz, with HyperTransport 1.0]
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Deterministic versus Monte-Carlo
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[PREDICI = commercial coarse-grained h-p-Galerkin simulator;
MC with 4 PEs matches PREDICI with 10° particles and accuracy 0.02]

,‘)A/

PLS

Stewart | Galois Inc Specialising Simulator Generators



~ Lesson

Make it a PL problem

e |t can be worthwhile to turn seemingly non-PL problems
(shortcomings with deterministic PDE solvers) into PL
problems (multiset rewriting & code specialisation)
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Lessons Learnt

Make it a PL problem
e |t can be worthwhile to turn seemingly non-PL problems
(shortcomings with deterministic PDE solvers) into PL
problems (multiset rewriting & code specialisation)

Declarative languages for computationally-intensive code

e Generative approaches can outperform hand-coded
low-level code

e Generators/compilers are a core domain of functional
languages

e Why not generate code for your next hard simulator
problem?
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Lessons Learnt

Make it a PL problem
e |t can be worthwhile to turn seemingly non-PL problems
(shortcomings with deterministic PDE solvers) into PL
problems (multiset rewriting & code specialisation)

Declarative languages for computationally-intensive code

e Generative approaches can outperform hand-coded
low-level code

e Generators/compilers are a core domain of functional
languages

e Why not generate code for your next hard simulator
problem?

Prototyping
e Simulator development by prototyping in Haskell (— paper) |
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Specialisation of inner loops in Monte-Carlo solvers
e MC always execute an inner loop very many times

e Specialisation is worthwhile whenever significant
parameters are fixed over all or many iterations
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Specialisation of inner loops in Monte-Carlo solvers
e MC always execute an inner loop very many times

e Specialisation is worthwhile whenever significant
parameters are fixed over all or many iterations

Parallelisation of Markov-chain Monte-Carlo

e Averaging of parallel system states (i.e., stirring) is
generally applicable in MCMC
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Conclusi

Specialising Monte-Carlo simulator generators
¢ Kinetics models as probabilistic rewrite systems
e Highly optimised low-level code
e Parallelisation of Markov-chain Monte-Carlo

e First competitive Monte-Carlo simulator for polymerisation
kinetics, produces microscopic information

Future work
e Other polymer structures (meshes)
e Application to financial mathematics
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Make sure you understand compilers
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