Specialising Simulator Generators
for High-Performance Monte-Carlo Methods

Gabriele Keller
Hugh Chaffey-Millar
Manuel M. T. Chakravarty
Don Stewart
Christopher Barner-Kowollik

University of New South Wales

Programming Languages and Systems &
Centre for Advanced Macromolecular Design

P

PLS

Don Stewart | Galois Inc Specialising Simulator Generators

You are not a computer scientist, but a chemist!
¢ You study new polymers and their efficient production

e The search space is too big to try all possible approaches
in the lab

P

PLS

Don Stewart | Galois Inc Specialising Simulator Generators

You are not a computer scientist, but a chemist!
¢ You study new polymers and their efficient production

e The search space is too big to try all possible approaches
in the lab

Kinetic models (here, polymerisation of bulk styrene)

Decomposition/Initiation
I — 2le kq

Ie + M — P(1) ki Termination

P@) + P() — DGE+j5) k
Pre-equilibrium

Main equilibrium
RAFT-R P(s RAFT-P(s R q
TR W+ R R b 4 RaFERG) - QG.J) ks
Propagation Q(%]) - P(i) . + RAFF"P(J') kg
P(n) + M— P(n+1) kp Q@,j) — P-RAFT(i) + P(j) kg

y

&

PLS

Don Stewart | Galois Inc Specialising Simulator Generators

Imagine

You are not a computer scientist, but a chemist!
¢ You study new polymers and their efficient production

e The search space is too big to try all possible approaches
in the lab

Kinetic models (here, polymerisation of bulk styrene)

Decomposition/Initiation
I — 2le ka

Ie + M — P(1) ki Termination

P@) + P() — DGE+j5) k
Pre-equilibrium

Main equilibrium
RAFT-R P(s RAFT-P(s R q
TR W+ R R b 4 RaFERG) - QG.J) ks
Propagation Q(%]) - P(i) . + RAFF‘P(J') kg
P(n) + M— P(n+1) kp Q@,j) — P-RAFT(i) + P(j) kg

y

Exploration by way of computational chemistry
e Turn kinetic models into PDEs
 Solve with a deterministic solver, esp. h-p-Galerkin method |

PLS
Don Stewart | Galois Inc Specialising Simulator Generators

Solving PDEs gives molecular weight distribution (MWD)

14000
12000
10000
8000
6000
4000
2000

concentragion

14000

7000
10000

o
7500

0
800 simulated time
700
0 oo Teo Iseconds
4% 300

degree
o 20 100 ®

of
polymerisation

Stewart | Galois Inc Specialising Simulator Generators

.E)l)

PLS

Solving PDEs gives molecular weight distribution (MWD)

14000

12000

10000
8000
6000
4000
2000

Imol Lﬂ

14000

7000
10000

800
70 60 o~ oo Isecond
50 o

degree
of 100
polymerisation

Problems encountered by chemists
e Scalability: slow for complex systems (star polymers)
e Generality: missing microscopic information:
» multiple chain lengths (i.e., star polymers)
» cross-linking densities and branching
» copolymer composition

,!;) D

e Improving both speed and information content seems hard

Don Stewart | Galois Inc Specialising Simulator Generators

1)
PLS

~ Back
Rese

Attack the problem from a different angle
¢ Replace deterministic by stochastic solver
e Don’t solve PDEs, use microscopic simulation

.

PLS

Don Stewart | Galois Inc Specialising Simulator Generators

Back T
Resear

Attack the problem from a different angle
¢ Replace deterministic by stochastic solver
e Don’t solve PDEs, use microscopic simulation

4

In other words, turn the problem into a programming languages
problem

Regard kinetic models as Decomposition/Initiation

probabilistic rewrite systems I — 2Ie k4
Ie + M — P(1) ki

&

PLS

Don Stewart | Galois Inc Specialising Simulator Generators

Back To
Research

Attack the problem from a different angle
¢ Replace deterministic by stochastic solver
e Don’t solve PDEs, use microscopic simulation

In other words, turn the problem into a programming languages
problem

Regard kinetic models as Decomposition/Initiation

probabilistic rewrite systems I — 2le k4
Ie + M — P(1) k;

Potential to gain both speed and information content
e Microscopic simulation gives microscopic information
e Stochastic solvers (Monte-Carlo) are easier to parallelise o
e We know much about speeding up the execution of RSes | ¢

Don Stewart | Galois Inc Specialising Simulator Generators

Microsc

The soup—aka system state
e Multiset of molecules
e Subscript is chain length of a polymer
e Monomers have no subscript
e Star polymers have multiple subscripts

&

PLS

Don Stewart | Galois Inc Specialising Simulator Generators

Microscopic simulation of polymerisationiieHeS

The soup—aka system state
e Multiset of molecules
e Subscript is chain length of a polymer
e Monomers have no subscript
e Star polymers have multiple subscripts

Reactions with rate coefficients—aka probabilistic rewrite rules
Reactions:

e Consume one or two molecules
I— Te+Te [Ky

]
le + M — Pq [K;]
Pp+M — Ppyq [kp1

Pn+Pm+— Dpim (K]

e Produce one or two molecules
Rate coefficients:

e Reaction probability relative to
molecule concentration

D

PLS

Don Stewart | Galois Inc Specialising Simulator Generators

Structure of the simulation

Reactions System
update A
Pn+Pm— Py | probabilities [—
H+Pm—P1 4y, 1 e
Py —Qm . I P
pick 4 I| update
random Qs Ps system
molecule -
P; Q2
3 - 4

2

pick random reaction

@ Compute reaction probabilities, known as rates:
» Product of the reaction’s rate coefficient and current
concentration of the reactants
» Stored in reaction rate tree
» Determines the probability distribution function
» Rate coefficients are experimentally determined D

PLS
Don Stewart | Galois Inc Specialising Simulator Generators

Structure of the simulation

Reactions System
update A
Pn+Pm—Pp, i m probabilities —
HPm Py DN S—
Pmpm—Qm . I P
pick L I| update
random Qs Ps system
molecule ;
P Q2
3 - 4

2

pick random reaction

@ Randomly pick a reaction

» Reaction rate tree enables fast reaction selection given a
uniformly distributed random number

» E.g., we might pick P, + Pm — Ppim
[NB: we haven'’t fixed n and m yet]

Don Stewart | Galois Inc Specialising Simulator Generators

,‘)l)

PLS

Structure of the simulation

Reactions System
update A
Pp+Pm—P, ., | probabilities e
I+P1n’—‘Pl+m 1 ;:::/
Py —Qm
) I
pick P I| update
rarlldonlz Qs Ps system
molecule -
P; Q2
3 - 4

pick random reaction 2

® Randomly pick the molecules
» For monomeres, there is nothing to do
» For polymeres, we need to pick one or more chain lengths
» E.g., For P, + Py — Phim, pick nand m randomly (from
available lengths)
» In some systems, different chain lengths react with different | ©)®

— PLS
probabilities
Don Stewart | Galois Inc Specialising Simulator Generators

Structure of the simulation

Reactions System
update y
Pn+Pm—Py 4, | Probabilities —
PP D S——
Pmpm—Qm -
: Ip
pick 4 I| update
random Qs Ps system
molecule
P Q2
3 - 4

2

pick random reaction

@ Compute reaction products
» Update the concentration of molecules
» E.g., remove P, and P, and add P,
» Advance system clock (non-trivial)

,‘)1)

PLS

Don Stewart | Galois Inc Specialising Simulator Generators

Reaction kinetics as probabilistic multiset rewriting

¢ Direct implementation of the four simulator steps
— interpreter for the rewrite system

P

PLS

Don Stewart | Galois Inc Specialising Simulator Generators

Reaction kinetics as probabilistic multiset rewriting

¢ Direct implementation of the four simulator steps
— interpreter for the rewrite system

e Performance is an issue: Let’'s compile the rewrite system!

Which part of the simulator is worth compiling?

&

PLS

Don Stewart | Galois Inc Specialising Simulator Generators

Specialisation

Reaction kinetics as probabilistic multiset rewriting

e Direct implementation of the four simulator steps
— interpreter for the rewrite system

e Performance is an issue: Let’'s compile the rewrite system!

Which part of the simulator is worth compiling?

e Only code that depends on the kinetics model (our
“program”)

e The code that updates the system state according to a
selected reaction and reactants:

@ Update molecule count—i.e., reactant concentrations
@ Adapt reaction probabilities
© Modify reaction rate tree

.‘)1)

PLS

Don Stewart | Galois Inc Specialising Simulator Generators

Runtime system as template (using CPP to instantiate)

#include "genpolymer.h" // generated by simulator generator

void oneReaction () {
// ...variable declarations omitted. ..

@ updateProbabilities ();
@ reactIndex = pickRndReact ();

®molllen = pickRndMol (reactToSpecIndl (reactIndex));

if (consumesTwoMols (reactIndex))

mol2Llen = pickRndMol (reactToSpecInd2 (reactIndex))

@ switch (reactIndex) // compute reaction products
DO_REACT_BODY // defined in genpolymer.h
incrementMolCnt (resMollSpec, resMollLen);
if (resMolCnt == 2)
incrementMolCnt (resMol2Spec, resMol2Len) ;
advanceSystemTime (); // compute At of this reaction
}

Don Stewart | Galois Inc Specialising Simulator Generators

,‘)A)

PLS

Simulator generator in Haskell
e Compiles the kinetics model (probabilistic rewrite system)

e For example,
(1 I+ o |

#define I_Star 2
#define DECOMPOSITION O

#define DO_REACT_BODY \
{case DECOMPOSITION:\
resMolCnt = 2;\
resMoliSpec = I_Star;\
resMol2Spec = I_Star;\
break;\

genpolymer.h A
1

Don Stewart | Galois Inc Specialising Simulator Generators

Haskell

Programming in Haskell
e Popular functional language: fast, all functions, no OQO!
e Pure — no side effects by default
Richly and strongly typed — no runtime type errors
Easy to parallelise, implicit and explicit cheap threads
Algebraic data types — good for symbolic manipulation

Example: data parallel dot product

dotp :: [: Double :] — [: Double :] — Double
dotp vw = sumP (zipWithP (x) v w)

&

PLS

Don Stewart | Galois Inc Specialising Simulator Generators

Specialising Simulator Generator
e Input is reaction specification
e Custom C runtime for reaction generated from Haskell
¢ All inputs become static constants

e C compiler then aggressively optimises the reaction
implementation

¢ Run compiled reaction and inspect results

Portability

e Simulator generation easy to retarget: single core,
multicore, clusters

e Just port the simulator runtime

Don Stewart | Galois Inc Specialising Simulator Generators

‘)A/

PLS

 Parall

Vanilla Monte-Carlo
e Probability distribution function is static
¢ All stochastic events are independent
e Embarrassingly parallel

&

PLS

Don Stewart | Galois Inc Specialising Simulator Generators

Paralleli

Vanilla Monte-Carlo
e Probability distribution function is static
¢ All stochastic events are independent
e Embarrassingly parallel

Markov-chain Monte-Carlo
e Probability distribution function is dynamic
e |t is dependant on previous stochastic events
e Fully sequential (no parallelism)

&

PLS

Don Stewart | Galois Inc Specialising Simulator Generators

Parallelisation

Vanilla Monte-Carlo
¢ Probability distribution function is static

¢ All stochastic events are independent
e Embarrassingly parallel

Markov-chain Monte-Carlo
e Probability distribution function is dynamic
e |tis dependant on previous stochastic events
e Fully sequential (no parallelism)

Our solution: stirring
e Physical reality: only molecules in close proximity can react
e Stirring: regularly, exchange and average system state
e Optimal stirring frequency dependant on Brownian motion | ¥

PLS
Don Stewart | Galois Inc Specialising Simulator Generators

Specialised versus unspecialised
70 T
generic simulator (gcc)
generic simulator (icc)
specialised simulator (gcc) -+
60 L specialised simulator (icc) - i
50 B
5 40} d
8
o
E
= 30 4
20
10 |-
0 O 0 L L L
10’ 2+10" 34107 4+10" 5+10"
. sim.ulator steps . '\)’:)
[icc = Intel C Compiler; gcc = GNU C Compiler] PLS
v

tewart | Galois Inc Specialising Simulator Generators

Parallel speedup

8 T T 8
P4 cluster (10}0 particles)
Opteron SMP (10", particles)
P4 cluster (10, particles) ===-=:*
7k Opteron SMP (107 particles) =»=- | 7
6 41 6
s T
=] e
3 45
o
Q
()
o
2
5 44
[5)
o
43
1 2
. 1
1 2 3 4 5 6 7 8

PE
[P4 cluster = Intel P4, 3.2GHz, with GigaBit Ethernet;
Opteron SMP = AMD Athlon 64 3200+, 2.2GHz, with HyperTransport 1.0]

Don Stewart | Galois Inc Specialising Simulator Generators

,‘)l)

PLS

Deterministic versus Monte-Carlo

40000 T T T T T T T T T
EENLp logarithmic depiction)
100000 T T T T T T T T T
« 30000 B
=
g
S 10000 £ 4
2 25000 4
Z
g 1000 £ E
E 20000 [i
-5
=
g 100 E
£ 15000 | 4
=
£ 10
“ 10000 [(1) 2) 3) (©)) (6) (@) 8) ©) b
5000 |- i
0 — PR — — D 1 N e— 1 —_—
) 2) 3)) ®) (6) (@] 8) ©)
PREDICI ~ PREDICI ~ PREDICI ~ PREDICI MC 10" Mc10° McC10°/8 MC10/16 MC10°/8
original optimised optimised optimised
0.02 001 0.02 0.05

[PREDICI = commercial coarse-grained h-p-Galerkin simulator;
MC with 4 PEs matches PREDICI with 10° particles and accuracy 0.02]

,‘)A/

PLS

Stewart | Galois Inc Specialising Simulator Generators

~ Lesson

Make it a PL problem

e |t can be worthwhile to turn seemingly non-PL problems
(shortcomings with deterministic PDE solvers) into PL
problems (multiset rewriting & code specialisation)

&

PLS

Don Stewart | Galois Inc Specialising Simulator Generators

Lessons Learnt

Make it a PL problem
e |t can be worthwhile to turn seemingly non-PL problems
(shortcomings with deterministic PDE solvers) into PL
problems (multiset rewriting & code specialisation)

Declarative languages for computationally-intensive code

e Generative approaches can outperform hand-coded
low-level code

e Generators/compilers are a core domain of functional
languages

e Why not generate code for your next hard simulator
problem?

.‘)1)

PLS

Don Stewart | Galois Inc Specialising Simulator Generators

Lessons Learnt

Make it a PL problem
e |t can be worthwhile to turn seemingly non-PL problems
(shortcomings with deterministic PDE solvers) into PL
problems (multiset rewriting & code specialisation)

Declarative languages for computationally-intensive code

e Generative approaches can outperform hand-coded
low-level code

e Generators/compilers are a core domain of functional
languages

e Why not generate code for your next hard simulator
problem?

Prototyping
e Simulator development by prototyping in Haskell (— paper) |

PLS
Don Stewart | Galois Inc Specialising Simulator Generators

Specialisation of inner loops in Monte-Carlo solvers
e MC always execute an inner loop very many times

e Specialisation is worthwhile whenever significant
parameters are fixed over all or many iterations

Don Stewart | Galois Inc Specialising Simulator Generators

,‘)l)

PLS

Specialisation of inner loops in Monte-Carlo solvers
e MC always execute an inner loop very many times

e Specialisation is worthwhile whenever significant
parameters are fixed over all or many iterations

Parallelisation of Markov-chain Monte-Carlo

e Averaging of parallel system states (i.e., stirring) is
generally applicable in MCMC

Don Stewart | Galois Inc Specialising Simulator Generators

,‘)l)

PLS

Conclusi

Specialising Monte-Carlo simulator generators
¢ Kinetics models as probabilistic rewrite systems
e Highly optimised low-level code
e Parallelisation of Markov-chain Monte-Carlo

e First competitive Monte-Carlo simulator for polymerisation
kinetics, produces microscopic information

Future work
e Other polymer structures (meshes)
e Application to financial mathematics

&

PLS

Don Stewart | Galois Inc Specialising Simulator Generators

Make sure you understand compilers

.

PLS

Don Stewart | Galois Inc Specialising Simulator Generators

