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Imagine. . .

You are not a computer scientist, but a chemist!
• You study new polymers and their efficient production
• The search space is too big to try all possible approaches

in the lab

Kinetic models (here, polymerisation of bulk styrene)

Exploration by way of computational chemistry
• Turn kinetic models into PDEs
• Solve with a deterministic solver, esp. h-p-Galerkin method
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Solving PDEs gives molecular weight distribution (MWD)
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Problems encountered by chemists
• Scalability: slow for complex systems (star polymers)
• Generality: missing microscopic information:

I multiple chain lengths (i.e., star polymers)
I cross-linking densities and branching
I copolymer composition

• Improving both speed and information content seems hard
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Back To Being a Programming Languages
Researcher!

Attack the problem from a different angle
• Replace deterministic by stochastic solver
• Don’t solve PDEs, use microscopic simulation

In other words, turn the problem into a programming languages
problem

Regard kinetic models as
probabilistic rewrite systems

Potential to gain both speed and information content
• Microscopic simulation gives microscopic information
• Stochastic solvers (Monte-Carlo) are easier to parallelise
• We know much about speeding up the execution of RSes
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Microscopic simulation of polymerisation kinetics

The soup—aka system state
• Multiset of molecules
• Subscript is chain length of a polymer
• Monomers have no subscript
• Star polymers have multiple subscripts

Reactions with rate coefficients—aka probabilistic rewrite rules
Reactions:

• Consume one or two molecules
• Produce one or two molecules

Rate coefficients:
• Reaction probability relative to

molecule concentration

I 7→ I• + I• [kd ]

I• + M 7→ P1 [ki ]

Pn + M 7→ Pn+1 [kp]

Pn + Pm 7→ Dn+m [kt ]
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Structure of the simulation

À Compute reaction probabilities, known as rates:
I Product of the reaction’s rate coefficient and current

concentration of the reactants
I Stored in reaction rate tree
I Determines the probability distribution function
I Rate coefficients are experimentally determined
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Structure of the simulation

Á Randomly pick a reaction
I Reaction rate tree enables fast reaction selection given a

uniformly distributed random number
I E.g., we might pick Pn + Pm 7→ Pn+m

[NB: we haven’t fixed n and m yet]
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Structure of the simulation

Â Randomly pick the molecules
I For monomeres, there is nothing to do
I For polymeres, we need to pick one or more chain lengths
I E.g., For Pn + Pm 7→ Pn+m, pick n and m randomly (from

available lengths)
I In some systems, different chain lengths react with different

probabilities
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Structure of the simulation

Ã Compute reaction products
I Update the concentration of molecules
I E.g., remove Pn and Pm and add Pn+m
I Advance system clock (non-trivial)
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Specialisation

Reaction kinetics as probabilistic multiset rewriting
• Direct implementation of the four simulator steps

=⇒ interpreter for the rewrite system

• Performance is an issue: Let’s compile the rewrite system!

Which part of the simulator is worth compiling?

• Only code that depends on the kinetics model (our
“program”)

• The code that updates the system state according to a
selected reaction and reactants:

1 Update molecule count—i.e., reactant concentrations
2 Adapt reaction probabilities
3 Modify reaction rate tree
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Runtime system as template (using CPP to instantiate)

#include "genpolymer.h" // generated by simulator generator
void oneReaction () {

// . . . variable declarations omitted. . .

À updateProbabilities ();

Á reactIndex = pickRndReact ();

Â mol1Len = pickRndMol (reactToSpecInd1 (reactIndex));

if (consumesTwoMols (reactIndex))

mol2Len = pickRndMol (reactToSpecInd2 (reactIndex));

Ã switch (reactIndex) // compute reaction products
DO_REACT_BODY // defined in genpolymer.h

incrementMolCnt (resMol1Spec, resMol1Len);

if (resMolCnt == 2)

incrementMolCnt (resMol2Spec, resMol2Len);

advanceSystemTime (); // compute ∆t of this reaction
}

Don Stewart | Galois Inc Specialising Simulator Generators



Simulator generator in Haskell
• Compiles the kinetics model (probabilistic rewrite system)
• For example,

I 7→ I• + I• ⇓
#define I_Star 2

...

#define DECOMPOSITION 0

...

#define DO_REACT_BODY \

{case DECOMPOSITION:\

resMolCnt = 2;\

resMol1Spec = I_Star;\

resMol2Spec = I_Star;\

break;\

...

genpolymer.h
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Haskell

Programming in Haskell
• Popular functional language: fast, all functions, no OO!
• Pure – no side effects by default
• Richly and strongly typed – no runtime type errors
• Easy to parallelise, implicit and explicit cheap threads
• Algebraic data types – good for symbolic manipulation

Example: data parallel dot product

dotp :: [: Double :] → [: Double :] → Double
dotp v w = sumP (zipWithP (∗) v w)
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Specialising Simulator Generator
• Input is reaction specification
• Custom C runtime for reaction generated from Haskell
• All inputs become static constants
• C compiler then aggressively optimises the reaction

implementation
• Run compiled reaction and inspect results

Portability
• Simulator generation easy to retarget: single core,

multicore, clusters
• Just port the simulator runtime
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Parallelisation

Vanilla Monte-Carlo
• Probability distribution function is static
• All stochastic events are independent
• Embarrassingly parallel

Markov-chain Monte-Carlo
• Probability distribution function is dynamic
• It is dependant on previous stochastic events
• Fully sequential (no parallelism)

Our solution: stirring
• Physical reality: only molecules in close proximity can react
• Stirring: regularly, exchange and average system state
• Optimal stirring frequency dependant on Brownian motion
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Benchmarks

Specialised versus unspecialised
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Parallel speedup
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[P4 cluster = Intel P4, 3.2GHz, with GigaBit Ethernet;
Opteron SMP = AMD Athlon 64 3200+, 2.2GHz, with HyperTransport 1.0]
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Deterministic versus Monte-Carlo
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[PREDICI = commercial coarse-grained h-p-Galerkin simulator;
MC with 4 PEs matches PREDICI with 109 particles and accuracy 0.02]
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Lessons Learnt

Make it a PL problem
• It can be worthwhile to turn seemingly non-PL problems

(shortcomings with deterministic PDE solvers) into PL
problems (multiset rewriting & code specialisation)

Declarative languages for computationally-intensive code
• Generative approaches can outperform hand-coded

low-level code
• Generators/compilers are a core domain of functional

languages
• Why not generate code for your next hard simulator

problem?

Prototyping
• Simulator development by prototyping in Haskell (→ paper)
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Specialisation of inner loops in Monte-Carlo solvers
• MC always execute an inner loop very many times
• Specialisation is worthwhile whenever significant

parameters are fixed over all or many iterations

Parallelisation of Markov-chain Monte-Carlo
• Averaging of parallel system states (i.e., stirring) is

generally applicable in MCMC
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Conclusions

Specialising Monte-Carlo simulator generators
• Kinetics models as probabilistic rewrite systems
• Highly optimised low-level code
• Parallelisation of Markov-chain Monte-Carlo
• First competitive Monte-Carlo simulator for polymerisation

kinetics, produces microscopic information

Future work
• Other polymer structures (meshes)
• Application to financial mathematics
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Thanks!

Make sure you understand compilers
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