
Specialising Simulator Generators
for High-Performance Monte-Carlo Methods

Gabriele Keller
Hugh Chaffey-Millar

Manuel M. T. Chakravarty
Don Stewart

Christopher Barner-Kowollik

University of New South Wales

Programming Languages and Systems &
Centre for Advanced Macromolecular Design

Don Stewart | Galois Inc Specialising Simulator Generators

Imagine. . .

You are not a computer scientist, but a chemist!
• You study new polymers and their efficient production
• The search space is too big to try all possible approaches

in the lab

Kinetic models (here, polymerisation of bulk styrene)

Exploration by way of computational chemistry
• Turn kinetic models into PDEs
• Solve with a deterministic solver, esp. h-p-Galerkin method

Don Stewart | Galois Inc Specialising Simulator Generators

Imagine. . .

You are not a computer scientist, but a chemist!
• You study new polymers and their efficient production
• The search space is too big to try all possible approaches

in the lab

Kinetic models (here, polymerisation of bulk styrene)

Exploration by way of computational chemistry
• Turn kinetic models into PDEs
• Solve with a deterministic solver, esp. h-p-Galerkin method

Don Stewart | Galois Inc Specialising Simulator Generators

Imagine. . .

You are not a computer scientist, but a chemist!
• You study new polymers and their efficient production
• The search space is too big to try all possible approaches

in the lab

Kinetic models (here, polymerisation of bulk styrene)

Exploration by way of computational chemistry
• Turn kinetic models into PDEs
• Solve with a deterministic solver, esp. h-p-Galerkin method

Don Stewart | Galois Inc Specialising Simulator Generators

Solving PDEs gives molecular weight distribution (MWD)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0

 2500

 5000

 7500

 10000

simulated time
/ seconds

0
100

200
300

400
500

600
700

800

degree
of

polymerisation

 0

 7000

 14000

concentration
/mol L-1

Problems encountered by chemists
• Scalability: slow for complex systems (star polymers)
• Generality: missing microscopic information:

I multiple chain lengths (i.e., star polymers)
I cross-linking densities and branching
I copolymer composition

• Improving both speed and information content seems hard

Don Stewart | Galois Inc Specialising Simulator Generators

Solving PDEs gives molecular weight distribution (MWD)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0

 2500

 5000

 7500

 10000

simulated time
/ seconds

0
100

200
300

400
500

600
700

800

degree
of

polymerisation

 0

 7000

 14000

concentration
/mol L-1

Problems encountered by chemists
• Scalability: slow for complex systems (star polymers)
• Generality: missing microscopic information:

I multiple chain lengths (i.e., star polymers)
I cross-linking densities and branching
I copolymer composition

• Improving both speed and information content seems hard

Don Stewart | Galois Inc Specialising Simulator Generators

Back To Being a Programming Languages
Researcher!

Attack the problem from a different angle
• Replace deterministic by stochastic solver
• Don’t solve PDEs, use microscopic simulation

In other words, turn the problem into a programming languages
problem

Regard kinetic models as
probabilistic rewrite systems

Potential to gain both speed and information content
• Microscopic simulation gives microscopic information
• Stochastic solvers (Monte-Carlo) are easier to parallelise
• We know much about speeding up the execution of RSes

Don Stewart | Galois Inc Specialising Simulator Generators

Back To Being a Programming Languages
Researcher!

Attack the problem from a different angle
• Replace deterministic by stochastic solver
• Don’t solve PDEs, use microscopic simulation

In other words, turn the problem into a programming languages
problem

Regard kinetic models as
probabilistic rewrite systems

Potential to gain both speed and information content
• Microscopic simulation gives microscopic information
• Stochastic solvers (Monte-Carlo) are easier to parallelise
• We know much about speeding up the execution of RSes

Don Stewart | Galois Inc Specialising Simulator Generators

Back To Being a Programming Languages
Researcher!

Attack the problem from a different angle
• Replace deterministic by stochastic solver
• Don’t solve PDEs, use microscopic simulation

In other words, turn the problem into a programming languages
problem

Regard kinetic models as
probabilistic rewrite systems

Potential to gain both speed and information content
• Microscopic simulation gives microscopic information
• Stochastic solvers (Monte-Carlo) are easier to parallelise
• We know much about speeding up the execution of RSes

Don Stewart | Galois Inc Specialising Simulator Generators

Microscopic simulation of polymerisation kinetics

The soup—aka system state
• Multiset of molecules
• Subscript is chain length of a polymer
• Monomers have no subscript
• Star polymers have multiple subscripts

Reactions with rate coefficients—aka probabilistic rewrite rules
Reactions:

• Consume one or two molecules
• Produce one or two molecules

Rate coefficients:
• Reaction probability relative to

molecule concentration

I 7→ I• + I• [kd]

I• + M 7→ P1 [ki]

Pn + M 7→ Pn+1 [kp]

Pn + Pm 7→ Dn+m [kt]

Don Stewart | Galois Inc Specialising Simulator Generators

Microscopic simulation of polymerisation kinetics

The soup—aka system state
• Multiset of molecules
• Subscript is chain length of a polymer
• Monomers have no subscript
• Star polymers have multiple subscripts

Reactions with rate coefficients—aka probabilistic rewrite rules
Reactions:

• Consume one or two molecules
• Produce one or two molecules

Rate coefficients:
• Reaction probability relative to

molecule concentration

I 7→ I• + I• [kd]

I• + M 7→ P1 [ki]

Pn + M 7→ Pn+1 [kp]

Pn + Pm 7→ Dn+m [kt]

Don Stewart | Galois Inc Specialising Simulator Generators

Structure of the simulation

À Compute reaction probabilities, known as rates:
I Product of the reaction’s rate coefficient and current

concentration of the reactants
I Stored in reaction rate tree
I Determines the probability distribution function
I Rate coefficients are experimentally determined

Don Stewart | Galois Inc Specialising Simulator Generators

Structure of the simulation

Á Randomly pick a reaction
I Reaction rate tree enables fast reaction selection given a

uniformly distributed random number
I E.g., we might pick Pn + Pm 7→ Pn+m

[NB: we haven’t fixed n and m yet]

Don Stewart | Galois Inc Specialising Simulator Generators

Structure of the simulation

Â Randomly pick the molecules
I For monomeres, there is nothing to do
I For polymeres, we need to pick one or more chain lengths
I E.g., For Pn + Pm 7→ Pn+m, pick n and m randomly (from

available lengths)
I In some systems, different chain lengths react with different

probabilities
Don Stewart | Galois Inc Specialising Simulator Generators

Structure of the simulation

Ã Compute reaction products
I Update the concentration of molecules
I E.g., remove Pn and Pm and add Pn+m
I Advance system clock (non-trivial)

Don Stewart | Galois Inc Specialising Simulator Generators

Specialisation

Reaction kinetics as probabilistic multiset rewriting
• Direct implementation of the four simulator steps

=⇒ interpreter for the rewrite system

• Performance is an issue: Let’s compile the rewrite system!

Which part of the simulator is worth compiling?

• Only code that depends on the kinetics model (our
“program”)

• The code that updates the system state according to a
selected reaction and reactants:

1 Update molecule count—i.e., reactant concentrations
2 Adapt reaction probabilities
3 Modify reaction rate tree

Don Stewart | Galois Inc Specialising Simulator Generators

Specialisation

Reaction kinetics as probabilistic multiset rewriting
• Direct implementation of the four simulator steps

=⇒ interpreter for the rewrite system
• Performance is an issue: Let’s compile the rewrite system!

Which part of the simulator is worth compiling?

• Only code that depends on the kinetics model (our
“program”)

• The code that updates the system state according to a
selected reaction and reactants:

1 Update molecule count—i.e., reactant concentrations
2 Adapt reaction probabilities
3 Modify reaction rate tree

Don Stewart | Galois Inc Specialising Simulator Generators

Specialisation

Reaction kinetics as probabilistic multiset rewriting
• Direct implementation of the four simulator steps

=⇒ interpreter for the rewrite system
• Performance is an issue: Let’s compile the rewrite system!

Which part of the simulator is worth compiling?
• Only code that depends on the kinetics model (our

“program”)
• The code that updates the system state according to a

selected reaction and reactants:
1 Update molecule count—i.e., reactant concentrations
2 Adapt reaction probabilities
3 Modify reaction rate tree

Don Stewart | Galois Inc Specialising Simulator Generators

Runtime system as template (using CPP to instantiate)

#include "genpolymer.h" // generated by simulator generator
void oneReaction () {

// . . . variable declarations omitted. . .

À updateProbabilities ();

Á reactIndex = pickRndReact ();

Â mol1Len = pickRndMol (reactToSpecInd1 (reactIndex));

if (consumesTwoMols (reactIndex))

mol2Len = pickRndMol (reactToSpecInd2 (reactIndex));

Ã switch (reactIndex) // compute reaction products
DO_REACT_BODY // defined in genpolymer.h

incrementMolCnt (resMol1Spec, resMol1Len);

if (resMolCnt == 2)

incrementMolCnt (resMol2Spec, resMol2Len);

advanceSystemTime (); // compute ∆t of this reaction
}

Don Stewart | Galois Inc Specialising Simulator Generators

Simulator generator in Haskell
• Compiles the kinetics model (probabilistic rewrite system)
• For example,

I 7→ I• + I• ⇓
#define I_Star 2

...

#define DECOMPOSITION 0

...

#define DO_REACT_BODY \

{case DECOMPOSITION:\

resMolCnt = 2;\

resMol1Spec = I_Star;\

resMol2Spec = I_Star;\

break;\

...

genpolymer.h

Don Stewart | Galois Inc Specialising Simulator Generators

Haskell

Programming in Haskell
• Popular functional language: fast, all functions, no OO!
• Pure – no side effects by default
• Richly and strongly typed – no runtime type errors
• Easy to parallelise, implicit and explicit cheap threads
• Algebraic data types – good for symbolic manipulation

Example: data parallel dot product

dotp :: [: Double :] → [: Double :] → Double
dotp v w = sumP (zipWithP (∗) v w)

Don Stewart | Galois Inc Specialising Simulator Generators

Specialising Simulator Generator
• Input is reaction specification
• Custom C runtime for reaction generated from Haskell
• All inputs become static constants
• C compiler then aggressively optimises the reaction

implementation
• Run compiled reaction and inspect results

Portability
• Simulator generation easy to retarget: single core,

multicore, clusters
• Just port the simulator runtime

Don Stewart | Galois Inc Specialising Simulator Generators

Parallelisation

Vanilla Monte-Carlo
• Probability distribution function is static
• All stochastic events are independent
• Embarrassingly parallel

Markov-chain Monte-Carlo
• Probability distribution function is dynamic
• It is dependant on previous stochastic events
• Fully sequential (no parallelism)

Our solution: stirring
• Physical reality: only molecules in close proximity can react
• Stirring: regularly, exchange and average system state
• Optimal stirring frequency dependant on Brownian motion

Don Stewart | Galois Inc Specialising Simulator Generators

Parallelisation

Vanilla Monte-Carlo
• Probability distribution function is static
• All stochastic events are independent
• Embarrassingly parallel

Markov-chain Monte-Carlo
• Probability distribution function is dynamic
• It is dependant on previous stochastic events
• Fully sequential (no parallelism)

Our solution: stirring
• Physical reality: only molecules in close proximity can react
• Stirring: regularly, exchange and average system state
• Optimal stirring frequency dependant on Brownian motion

Don Stewart | Galois Inc Specialising Simulator Generators

Parallelisation

Vanilla Monte-Carlo
• Probability distribution function is static
• All stochastic events are independent
• Embarrassingly parallel

Markov-chain Monte-Carlo
• Probability distribution function is dynamic
• It is dependant on previous stochastic events
• Fully sequential (no parallelism)

Our solution: stirring
• Physical reality: only molecules in close proximity can react
• Stirring: regularly, exchange and average system state
• Optimal stirring frequency dependant on Brownian motion

Don Stewart | Galois Inc Specialising Simulator Generators

Benchmarks

Specialised versus unspecialised

 0

 10

 20

 30

 40

 50

 60

 70

 107 2*107 3*107 4*107 5*107

T
im

e
(s

ec
)

Simulator steps

generic simulator (gcc)
generic simulator (icc)

specialised simulator (gcc)
specialised simulator (icc)

[icc = Intel C Compiler; gcc = GNU C Compiler]

Don Stewart | Galois Inc Specialising Simulator Generators

Parallel speedup

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8
 1

 2

 3

 4

 5

 6

 7

 8
Re

la
tiv

e
Sp

ee
du

p

PE

P4 cluster (1010 particles)
Opteron SMP (1010 particles)

P4 cluster (109 particles)
Opteron SMP (109 particles)

[P4 cluster = Intel P4, 3.2GHz, with GigaBit Ethernet;
Opteron SMP = AMD Athlon 64 3200+, 2.2GHz, with HyperTransport 1.0]

Don Stewart | Galois Inc Specialising Simulator Generators

Deterministic versus Monte-Carlo

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

(1)

PREDICI
original

0.02

(2)

PREDICI
optimised

0.01

(3)

PREDICI
optimised

0.02

(4)

PREDICI
optimised

0.05

(5)

MC 1010

(6)

MC 109

(7)

MC 1010 / 8

(8)

MC 1010 / 16

(9)

MC 109 / 8

sim
ul

at
io

n
tim

e
/ s

ec
on

ds

 10

 100

 1000

 10000

 100000

(1) (2) (3) (4) (5) (6) (7) (8) (9)

logarithmic depiction

[PREDICI = commercial coarse-grained h-p-Galerkin simulator;
MC with 4 PEs matches PREDICI with 109 particles and accuracy 0.02]

Don Stewart | Galois Inc Specialising Simulator Generators

Lessons Learnt

Make it a PL problem
• It can be worthwhile to turn seemingly non-PL problems

(shortcomings with deterministic PDE solvers) into PL
problems (multiset rewriting & code specialisation)

Declarative languages for computationally-intensive code
• Generative approaches can outperform hand-coded

low-level code
• Generators/compilers are a core domain of functional

languages
• Why not generate code for your next hard simulator

problem?

Prototyping
• Simulator development by prototyping in Haskell (→ paper)

Don Stewart | Galois Inc Specialising Simulator Generators

Lessons Learnt

Make it a PL problem
• It can be worthwhile to turn seemingly non-PL problems

(shortcomings with deterministic PDE solvers) into PL
problems (multiset rewriting & code specialisation)

Declarative languages for computationally-intensive code
• Generative approaches can outperform hand-coded

low-level code
• Generators/compilers are a core domain of functional

languages
• Why not generate code for your next hard simulator

problem?

Prototyping
• Simulator development by prototyping in Haskell (→ paper)

Don Stewart | Galois Inc Specialising Simulator Generators

Lessons Learnt

Make it a PL problem
• It can be worthwhile to turn seemingly non-PL problems

(shortcomings with deterministic PDE solvers) into PL
problems (multiset rewriting & code specialisation)

Declarative languages for computationally-intensive code
• Generative approaches can outperform hand-coded

low-level code
• Generators/compilers are a core domain of functional

languages
• Why not generate code for your next hard simulator

problem?

Prototyping
• Simulator development by prototyping in Haskell (→ paper)

Don Stewart | Galois Inc Specialising Simulator Generators

Specialisation of inner loops in Monte-Carlo solvers
• MC always execute an inner loop very many times
• Specialisation is worthwhile whenever significant

parameters are fixed over all or many iterations

Parallelisation of Markov-chain Monte-Carlo
• Averaging of parallel system states (i.e., stirring) is

generally applicable in MCMC

Don Stewart | Galois Inc Specialising Simulator Generators

Specialisation of inner loops in Monte-Carlo solvers
• MC always execute an inner loop very many times
• Specialisation is worthwhile whenever significant

parameters are fixed over all or many iterations

Parallelisation of Markov-chain Monte-Carlo
• Averaging of parallel system states (i.e., stirring) is

generally applicable in MCMC

Don Stewart | Galois Inc Specialising Simulator Generators

Conclusions

Specialising Monte-Carlo simulator generators
• Kinetics models as probabilistic rewrite systems
• Highly optimised low-level code
• Parallelisation of Markov-chain Monte-Carlo
• First competitive Monte-Carlo simulator for polymerisation

kinetics, produces microscopic information

Future work
• Other polymer structures (meshes)
• Application to financial mathematics

Don Stewart | Galois Inc Specialising Simulator Generators

Thanks!

Make sure you understand compilers

Don Stewart | Galois Inc Specialising Simulator Generators

